Introducing Te for boosting electrocatalytic reactions
The deployment of robust catalysts for electrochemical reactions is a critical topic for energy conversion techniques. Te-based nanomaterials have attracted increasing attention for their application in electrochemical reactions due to their positive influence on the electrocatalytic performance ind...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2023-01, Vol.52 (2), p.245-259 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The deployment of robust catalysts for electrochemical reactions is a critical topic for energy conversion techniques. Te-based nanomaterials have attracted increasing attention for their application in electrochemical reactions due to their positive influence on the electrocatalytic performance induced by their distinctive electronic and physicochemical properties. Herein, we have summarized the recent progress on Te-based nanocatalysts for electrocatalytic reactions by primarily focusing on the positive influence of Te on electrocatalysts. Firstly, Te-based nanomaterials can serve as an ideal template for the construction of well-defined nanostructures. Secondly, Te doping can significantly modify the electronic structure of the host catalyst, thereby, leading to the optimization of binding strength with intermediates. Furthermore, the Te etching strategy can also create a high density of surface defects, thereby leading to substantial improvement in the electrocatalytic performance. Additionally, many representative Te-based nanocatalysts for electrocatalytic reactions are also summarized and systematically discussed. Finally, a conclusive and perspective discussion is also provided to provide guidance for the future development of more efficient electrocatalysts.
Te-based nanocatalysts with multiple structures have been summarized for boosting electrocatalytic reactions. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/d2dt03253h |