Main group metal polymerisation catalysts
With sustainability at the forefront of current polymerisation research, the typically earth-abundant, inexpensive and low-toxicity main group metals are attractive candidates for catalysis. Main group metals have been exploited in a broad range of polymerisations, ranging from classical alkene poly...
Gespeichert in:
Veröffentlicht in: | Chemical Society reviews 2022-10, Vol.51 (21), p.8793-8814 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With sustainability at the forefront of current polymerisation research, the typically earth-abundant, inexpensive and low-toxicity main group metals are attractive candidates for catalysis. Main group metals have been exploited in a broad range of polymerisations, ranging from classical alkene polymerisation to the synthesis of new bio-derived and degradable polyesters and polycarbonates
via
ring-opening polymerisation and ring-opening copolymerisation. This tutorial review highlights efficient polymerisation catalysts based on Group 1, Group 2, Zn and Group 13 metals. Key mechanistic pathways and catalyst developments are discussed, including tailored ligand design, heterometallic cooperativity, bicomponent systems and careful selection of the polymerisation conditions, all of which can be used to fine-tune the metal Lewis acidity and the metal-alkyl bond polarity.
This tutorial review provides an outline of basic concepts, historical milestones and recent advances in main group metal catalysed olefin polymerisation and ring-opening (co)polymerisation reactions. |
---|---|
ISSN: | 0306-0012 1460-4744 |
DOI: | 10.1039/d2cs00048b |