Glucose-induced self-assembly and phase separation in hydrophilic triblock copolymers and the governing mechanism

Poly(ethylene oxide, EO)-poly(propylene oxide, PO)-poly(ethylene oxide, EO)-based triblock copolymers (BCPs) with 80% hydrophilicity stay molecularly dissolved as Gaussian chains at ambient temperature, even at fairly high concentrations (>5 %w/v). This study presents the plausible micellization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-09, Vol.24 (35), p.21141-21156
Hauptverfasser: Patel, Divya, Bhojani, Amit K, Ray, Debes, Singh, Dheeraj K, Bhattacharjee, Sanyukta, Seth, Debabrata, Aswal, Vinod K, Kuperkar, Ketan, Bahadur, Pratap
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly(ethylene oxide, EO)-poly(propylene oxide, PO)-poly(ethylene oxide, EO)-based triblock copolymers (BCPs) with 80% hydrophilicity stay molecularly dissolved as Gaussian chains at ambient temperature, even at fairly high concentrations (>5 %w/v). This study presents the plausible micellization behaviour of such very-hydrophilic Pluronics® - F38, F68, F88, F98, and F108 - incited upon the addition of glucose at low concentrations and temperatures. The outcomes obtained from phase behaviour and scattering studies are described. At temperatures near to ambient temperature, these BCPs form micelles with a central core made of a PO block, surrounded by a corona of highly hydrated EO chains. The phase transitions in these hydrophilic Pluronics® in the presence of glucose are demonstrated via the dehydration of the copolymer coil, leading to a decrease in the I 1 / I 3 ratio, as determined using fluorescence spectroscopy. The temperature-dependent cloud point (CP) showed a marked decrease with an increase in the PO molecular weight and also in the presence of glucose. The change in solution relative viscosity ( η rel ) caused by glucose is due to the enhanced dehydration of the EO block of the BCP amphiphile. Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) investigations suggested that the dimensions of the hydrophobic core increase during the dehydration of the EO-PO blocks upon a temperature increase or after adding varying concentrations of glucose, thereby resulting in a micellar shape transition. It has been observed that added glucose influences the phase behaviour of BCPs in an analogous way to the influence of temperature. Also, plausible interactions between the EO-PO blocks and glucose were suggested based on the evaluated optimized descriptors obtained from a computational simulation approach. In addition, the core-shell blended micelles obtained using these BCPs are successfully utilized for drug (curcumin, Cur) solubilization based on the observed peak intensities from UV-visible spectroscopy. The loading of Cur into glucose-containing and glucose-free hydrophilic Pluronic® micelles shows how the radius of the micellar core ( R c ) increases in the presence of glucose, thereby indicating Cur solubility enhancement for the Pluronic® micelles. Various kinetics models were employed, demonstrating a drug release profile that enables this approach to be used as an ideal platform for drug delivery. The self-assembly of solutions
ISSN:1463-9076
1463-9084
DOI:10.1039/d2cp01909d