Regioregular, yet ductile and amorphous indacenodithiophene-based polymers with high-mobility for stretchable plastic transistors

In the past decade, various high-performing π-conjugated polymers based on axisymmetric cyclopentadithiophene (CDT) and centrosymmetric indacenodithiophene (IDT) units have been thoroughly studied for use in organic field-effect transistors. However, no comparative set of data between CDT- and IDT-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2021-08, Vol.9 (3), p.967-9682
Hauptverfasser: Cho, Yongjoon, Park, Sohee, Jeong, Seonghun, Yang, Heesoo, Lee, Byongkyu, Lee, Sang Myeon, Lee, Byoung Hoon, Yang, Changduk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the past decade, various high-performing π-conjugated polymers based on axisymmetric cyclopentadithiophene (CDT) and centrosymmetric indacenodithiophene (IDT) units have been thoroughly studied for use in organic field-effect transistors. However, no comparative set of data between CDT- and IDT-based polymers is available with a focus on relevant change in optoelectronic and morphological properties. Herein, we report the synthesis and characterization of four regioregular, well-defined donor-acceptor polymers ( P1-P4 ), comprising different compositions of CDT and IDT donors in conjugation with the asymmetric 5-fluoro-2,1,3-benzothiadiazole acceptor that is precisely oriented in the regular pattern along the backbone. Morphological analyses of the above polymer series show that exclusive CDT donor-containing P1 is semicrystalline, whereas the others (IDT donor-containing ones) are near-amorphous in nature. Comparatively, IDT donor-containing polymers have superior hole mobilities; in particular, exclusive IDT donor-containing polymer P4 offers a high mobility of 1.67 cm 2 V −1 s −1 . In addition, the near-amorphous characteristics render the IDT donor-containing polymer films highly ductile and stretchable. Such superior features, which are associated with excellent charge transport and ductility, demonstrate a promising possibility for application in viable stretchable electronics. Regioregular yet near-amorphous indacenodithiophene-based polymers exhibit superior deformability as well as high mobility values up to 1.67 cm 2 V −1 s −1 .
ISSN:2050-7526
2050-7534
DOI:10.1039/d1tc01984h