Improving the performance stability of direct seawater electrolysis: from catalyst design to electrode engineering

Direct seawater electrolysis opens a new opportunity to lower the cost of hydrogen production from current water electrolysis technologies. To facilitate its commercialization, the challenges of long-term performance stability of electrochemical devices need to be first addressed and realized. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-09, Vol.13 (36), p.15177-15187
Hauptverfasser: Zheng, Weiran, Lee, Lawrence Yoon Suk, Wong, Kwok-Yin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Direct seawater electrolysis opens a new opportunity to lower the cost of hydrogen production from current water electrolysis technologies. To facilitate its commercialization, the challenges of long-term performance stability of electrochemical devices need to be first addressed and realized. This minireview summarised the common causes of performance decline during seawater electrolysis, from chemical reactions at the electrode surface to physical damage to the cell. The problems triggered by the impurities in seawater are specifically discussed. Following these issues, we further outlined the ongoing effort of counter-measurements: from electrocatalyst optimization to electrode engineering and cell design. The recent progress in selectivity tuning, surface protection, gas diffusion, and cell configuration is highlighted. In the final remark, we emphasized the need for a consensus on evaluating the stability of seawater electrolysis in the current literature. Direct seawater electrolysis opens a new opportunity to lower the cost of hydrogen production from current water electrolysis technologies.
ISSN:2040-3364
2040-3372
DOI:10.1039/d1nr03294a