Crystalline silicon nanoparticle formation by tailored plasma irradiation: self-structurization, nucleation and growth acceleration, and size control

Crystalline silicon nanoparticles at the nanometer scale have been attracting great interest in many different optoelectronic applications such as photovoltaic and light-emitting-diode devices. Formation, crystallization, and size control of silicon nanoparticles in nonharsh and nontoxic environment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-06, Vol.13 (23), p.1356-1364
Hauptverfasser: Choi, Daehan, Kim, Jung Hyung, Kwon, Deuk Chul, Shin, Chae Ho, Ryu, Hyun, Yoon, Euijoon, Lee, Hyo-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1364
container_issue 23
container_start_page 1356
container_title Nanoscale
container_volume 13
creator Choi, Daehan
Kim, Jung Hyung
Kwon, Deuk Chul
Shin, Chae Ho
Ryu, Hyun
Yoon, Euijoon
Lee, Hyo-Chang
description Crystalline silicon nanoparticles at the nanometer scale have been attracting great interest in many different optoelectronic applications such as photovoltaic and light-emitting-diode devices. Formation, crystallization, and size control of silicon nanoparticles in nonharsh and nontoxic environments are highly required to achieve outstanding optoelectronic characteristics. The existing methods require high temperature, use of HF solution, and an additional process for the uniform redistribution of nanoparticles on the substrate and there are difficulties in controlling the size. Herein, we report a new self-assembly method that applies the controlled extremely low plasma ion energy near the sputtering threshold energy in rare gas environments as nonharsh and nontoxic environments. This method produces silicon nanoparticles by crystallization nucleation directly at the surface of the amorphous film via plasma surface interactions. It is evidently observed that the nucleation and growth rates of the crystalline silicon nanoparticles are promoted by the enhanced plasma ion energy. The crystalline silicon nanoparticle size is tailored to the nanometer scale by the plasma ion energy control. The self-structurization process of crystalline Si nanoparticles from a-Si thin film surface by tailored Ar plasma irradiation: Nucleation, growth and size control by extremely-low ion energy transfer.
doi_str_mv 10.1039/d1nr00628b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1NR00628B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539523691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-b6f050d3a71f880ddb88b1a219d08c7892918c5f78406d1d1d360e3ffaba91b83</originalsourceid><addsrcrecordid>eNpdkV1LLDEMhgc5gh71xnuh4I2Io-10drbjna6fIAqi10OmH1rptmvaQdb_4f-1uyseOASSkDy8CbxFscvoMaO8PVHMI6VNJfq1YrOiNS05H1d_fvum3ij-xviWmZY3fLP4muA8JnDOek2idVYGTzz4MANMVjpNTMApJJvH_ZwksC6gVmTmIE6BWERQdrk-JVE7U8aEg0wD2s_l9Ij4IausBMAr8oLhI70SkFI7jT_MYhHtpyb5esLgtot1Ay7qnZ-6VTxfXT5Nbsq7h-vbydldKau6TmXfGDqiisOYGSGoUr0QPYOKtYoKORZt1TIhR2YsatooloM3VHNjoIeW9YJvFQcr3RmG90HH1E1tzI858DoMsatGvB1VvGlZRvf_Q9_CgD5_l6maCbZImTpcURJDjKhNN0M7BZx3jHYLh7oLdv-4dOg8w3srGKP85f45yL8BNryREg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541815418</pqid></control><display><type>article</type><title>Crystalline silicon nanoparticle formation by tailored plasma irradiation: self-structurization, nucleation and growth acceleration, and size control</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Choi, Daehan ; Kim, Jung Hyung ; Kwon, Deuk Chul ; Shin, Chae Ho ; Ryu, Hyun ; Yoon, Euijoon ; Lee, Hyo-Chang</creator><creatorcontrib>Choi, Daehan ; Kim, Jung Hyung ; Kwon, Deuk Chul ; Shin, Chae Ho ; Ryu, Hyun ; Yoon, Euijoon ; Lee, Hyo-Chang</creatorcontrib><description>Crystalline silicon nanoparticles at the nanometer scale have been attracting great interest in many different optoelectronic applications such as photovoltaic and light-emitting-diode devices. Formation, crystallization, and size control of silicon nanoparticles in nonharsh and nontoxic environments are highly required to achieve outstanding optoelectronic characteristics. The existing methods require high temperature, use of HF solution, and an additional process for the uniform redistribution of nanoparticles on the substrate and there are difficulties in controlling the size. Herein, we report a new self-assembly method that applies the controlled extremely low plasma ion energy near the sputtering threshold energy in rare gas environments as nonharsh and nontoxic environments. This method produces silicon nanoparticles by crystallization nucleation directly at the surface of the amorphous film via plasma surface interactions. It is evidently observed that the nucleation and growth rates of the crystalline silicon nanoparticles are promoted by the enhanced plasma ion energy. The crystalline silicon nanoparticle size is tailored to the nanometer scale by the plasma ion energy control. The self-structurization process of crystalline Si nanoparticles from a-Si thin film surface by tailored Ar plasma irradiation: Nucleation, growth and size control by extremely-low ion energy transfer.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr00628b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Crystal structure ; Crystallinity ; Crystallization ; High temperature ; Light emitting diodes ; Nanoparticles ; Nucleation ; Optoelectronic devices ; Photovoltaic cells ; Plasma ; Rare gases ; Self-assembly ; Silicon ; Substrates</subject><ispartof>Nanoscale, 2021-06, Vol.13 (23), p.1356-1364</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c244t-b6f050d3a71f880ddb88b1a219d08c7892918c5f78406d1d1d360e3ffaba91b83</citedby><cites>FETCH-LOGICAL-c244t-b6f050d3a71f880ddb88b1a219d08c7892918c5f78406d1d1d360e3ffaba91b83</cites><orcidid>0000-0003-2754-1512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Choi, Daehan</creatorcontrib><creatorcontrib>Kim, Jung Hyung</creatorcontrib><creatorcontrib>Kwon, Deuk Chul</creatorcontrib><creatorcontrib>Shin, Chae Ho</creatorcontrib><creatorcontrib>Ryu, Hyun</creatorcontrib><creatorcontrib>Yoon, Euijoon</creatorcontrib><creatorcontrib>Lee, Hyo-Chang</creatorcontrib><title>Crystalline silicon nanoparticle formation by tailored plasma irradiation: self-structurization, nucleation and growth acceleration, and size control</title><title>Nanoscale</title><description>Crystalline silicon nanoparticles at the nanometer scale have been attracting great interest in many different optoelectronic applications such as photovoltaic and light-emitting-diode devices. Formation, crystallization, and size control of silicon nanoparticles in nonharsh and nontoxic environments are highly required to achieve outstanding optoelectronic characteristics. The existing methods require high temperature, use of HF solution, and an additional process for the uniform redistribution of nanoparticles on the substrate and there are difficulties in controlling the size. Herein, we report a new self-assembly method that applies the controlled extremely low plasma ion energy near the sputtering threshold energy in rare gas environments as nonharsh and nontoxic environments. This method produces silicon nanoparticles by crystallization nucleation directly at the surface of the amorphous film via plasma surface interactions. It is evidently observed that the nucleation and growth rates of the crystalline silicon nanoparticles are promoted by the enhanced plasma ion energy. The crystalline silicon nanoparticle size is tailored to the nanometer scale by the plasma ion energy control. The self-structurization process of crystalline Si nanoparticles from a-Si thin film surface by tailored Ar plasma irradiation: Nucleation, growth and size control by extremely-low ion energy transfer.</description><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>High temperature</subject><subject>Light emitting diodes</subject><subject>Nanoparticles</subject><subject>Nucleation</subject><subject>Optoelectronic devices</subject><subject>Photovoltaic cells</subject><subject>Plasma</subject><subject>Rare gases</subject><subject>Self-assembly</subject><subject>Silicon</subject><subject>Substrates</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkV1LLDEMhgc5gh71xnuh4I2Io-10drbjna6fIAqi10OmH1rptmvaQdb_4f-1uyseOASSkDy8CbxFscvoMaO8PVHMI6VNJfq1YrOiNS05H1d_fvum3ij-xviWmZY3fLP4muA8JnDOek2idVYGTzz4MANMVjpNTMApJJvH_ZwksC6gVmTmIE6BWERQdrk-JVE7U8aEg0wD2s_l9Ij4IausBMAr8oLhI70SkFI7jT_MYhHtpyb5esLgtot1Ay7qnZ-6VTxfXT5Nbsq7h-vbydldKau6TmXfGDqiisOYGSGoUr0QPYOKtYoKORZt1TIhR2YsatooloM3VHNjoIeW9YJvFQcr3RmG90HH1E1tzI858DoMsatGvB1VvGlZRvf_Q9_CgD5_l6maCbZImTpcURJDjKhNN0M7BZx3jHYLh7oLdv-4dOg8w3srGKP85f45yL8BNryREg</recordid><startdate>20210617</startdate><enddate>20210617</enddate><creator>Choi, Daehan</creator><creator>Kim, Jung Hyung</creator><creator>Kwon, Deuk Chul</creator><creator>Shin, Chae Ho</creator><creator>Ryu, Hyun</creator><creator>Yoon, Euijoon</creator><creator>Lee, Hyo-Chang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2754-1512</orcidid></search><sort><creationdate>20210617</creationdate><title>Crystalline silicon nanoparticle formation by tailored plasma irradiation: self-structurization, nucleation and growth acceleration, and size control</title><author>Choi, Daehan ; Kim, Jung Hyung ; Kwon, Deuk Chul ; Shin, Chae Ho ; Ryu, Hyun ; Yoon, Euijoon ; Lee, Hyo-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-b6f050d3a71f880ddb88b1a219d08c7892918c5f78406d1d1d360e3ffaba91b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>High temperature</topic><topic>Light emitting diodes</topic><topic>Nanoparticles</topic><topic>Nucleation</topic><topic>Optoelectronic devices</topic><topic>Photovoltaic cells</topic><topic>Plasma</topic><topic>Rare gases</topic><topic>Self-assembly</topic><topic>Silicon</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Daehan</creatorcontrib><creatorcontrib>Kim, Jung Hyung</creatorcontrib><creatorcontrib>Kwon, Deuk Chul</creatorcontrib><creatorcontrib>Shin, Chae Ho</creatorcontrib><creatorcontrib>Ryu, Hyun</creatorcontrib><creatorcontrib>Yoon, Euijoon</creatorcontrib><creatorcontrib>Lee, Hyo-Chang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Daehan</au><au>Kim, Jung Hyung</au><au>Kwon, Deuk Chul</au><au>Shin, Chae Ho</au><au>Ryu, Hyun</au><au>Yoon, Euijoon</au><au>Lee, Hyo-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystalline silicon nanoparticle formation by tailored plasma irradiation: self-structurization, nucleation and growth acceleration, and size control</atitle><jtitle>Nanoscale</jtitle><date>2021-06-17</date><risdate>2021</risdate><volume>13</volume><issue>23</issue><spage>1356</spage><epage>1364</epage><pages>1356-1364</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Crystalline silicon nanoparticles at the nanometer scale have been attracting great interest in many different optoelectronic applications such as photovoltaic and light-emitting-diode devices. Formation, crystallization, and size control of silicon nanoparticles in nonharsh and nontoxic environments are highly required to achieve outstanding optoelectronic characteristics. The existing methods require high temperature, use of HF solution, and an additional process for the uniform redistribution of nanoparticles on the substrate and there are difficulties in controlling the size. Herein, we report a new self-assembly method that applies the controlled extremely low plasma ion energy near the sputtering threshold energy in rare gas environments as nonharsh and nontoxic environments. This method produces silicon nanoparticles by crystallization nucleation directly at the surface of the amorphous film via plasma surface interactions. It is evidently observed that the nucleation and growth rates of the crystalline silicon nanoparticles are promoted by the enhanced plasma ion energy. The crystalline silicon nanoparticle size is tailored to the nanometer scale by the plasma ion energy control. The self-structurization process of crystalline Si nanoparticles from a-Si thin film surface by tailored Ar plasma irradiation: Nucleation, growth and size control by extremely-low ion energy transfer.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr00628b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2754-1512</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2021-06, Vol.13 (23), p.1356-1364
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_D1NR00628B
source Royal Society Of Chemistry Journals 2008-
subjects Crystal structure
Crystallinity
Crystallization
High temperature
Light emitting diodes
Nanoparticles
Nucleation
Optoelectronic devices
Photovoltaic cells
Plasma
Rare gases
Self-assembly
Silicon
Substrates
title Crystalline silicon nanoparticle formation by tailored plasma irradiation: self-structurization, nucleation and growth acceleration, and size control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystalline%20silicon%20nanoparticle%20formation%20by%20tailored%20plasma%20irradiation:%20self-structurization,%20nucleation%20and%20growth%20acceleration,%20and%20size%20control&rft.jtitle=Nanoscale&rft.au=Choi,%20Daehan&rft.date=2021-06-17&rft.volume=13&rft.issue=23&rft.spage=1356&rft.epage=1364&rft.pages=1356-1364&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr00628b&rft_dat=%3Cproquest_cross%3E2539523691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541815418&rft_id=info:pmid/&rfr_iscdi=true