Crystalline silicon nanoparticle formation by tailored plasma irradiation: self-structurization, nucleation and growth acceleration, and size control

Crystalline silicon nanoparticles at the nanometer scale have been attracting great interest in many different optoelectronic applications such as photovoltaic and light-emitting-diode devices. Formation, crystallization, and size control of silicon nanoparticles in nonharsh and nontoxic environment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-06, Vol.13 (23), p.1356-1364
Hauptverfasser: Choi, Daehan, Kim, Jung Hyung, Kwon, Deuk Chul, Shin, Chae Ho, Ryu, Hyun, Yoon, Euijoon, Lee, Hyo-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crystalline silicon nanoparticles at the nanometer scale have been attracting great interest in many different optoelectronic applications such as photovoltaic and light-emitting-diode devices. Formation, crystallization, and size control of silicon nanoparticles in nonharsh and nontoxic environments are highly required to achieve outstanding optoelectronic characteristics. The existing methods require high temperature, use of HF solution, and an additional process for the uniform redistribution of nanoparticles on the substrate and there are difficulties in controlling the size. Herein, we report a new self-assembly method that applies the controlled extremely low plasma ion energy near the sputtering threshold energy in rare gas environments as nonharsh and nontoxic environments. This method produces silicon nanoparticles by crystallization nucleation directly at the surface of the amorphous film via plasma surface interactions. It is evidently observed that the nucleation and growth rates of the crystalline silicon nanoparticles are promoted by the enhanced plasma ion energy. The crystalline silicon nanoparticle size is tailored to the nanometer scale by the plasma ion energy control. The self-structurization process of crystalline Si nanoparticles from a-Si thin film surface by tailored Ar plasma irradiation: Nucleation, growth and size control by extremely-low ion energy transfer.
ISSN:2040-3364
2040-3372
DOI:10.1039/d1nr00628b