Conservation of the Stokes-Einstein relation in supercooled water
The Stokes-Einstein (SE) relation is commonly regarded as being breakdown in supercooled water. However, this conclusion is drawn by testing the validity of some variants of the SE relation rather than its original form, and it appears conflicting with the fact that supercooled water is in its local...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2021-11, Vol.23 (43), p.24541-24544 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Stokes-Einstein (SE) relation is commonly regarded as being breakdown in supercooled water. However, this conclusion is drawn by testing the validity of some variants of the SE relation rather than its original form, and it appears conflicting with the fact that supercooled water is in its local equilibrium. In this work, we show by molecular dynamics simulations that the Stokes-Einstein relation is indeed conserved in supercooled water. The inconsistency between the original SE relation and its variants comes from two facts: (1) the substitutes of the shear viscosity in the SE variants are only approximate relations; and (2) the effective hydrodynamic radius actually decreases with decreasing temperature, instead of being a constant as assumed in the SE variants.
The Stokes-Einstein (SE) relation is commonly regarded as being breakdown in supercooled water. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d1cp03972e |