Core-softened water-alcohol mixtures: the solute-size effects
Water is the most anomalous material on Earth, with a long list of thermodynamic, dynamic and structural behaviors that deviate from what is expected. Recent studies have indicated that these anomalies may be related to a competition between two liquids, which means that water has a potential liquid...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2021-08, Vol.23 (3), p.16213-16223 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Water is the most anomalous material on Earth, with a long list of thermodynamic, dynamic and structural behaviors that deviate from what is expected. Recent studies have indicated that these anomalies may be related to a competition between two liquids, which means that water has a potential liquid-liquid phase transition (LLPT) that ends at a liquid-liquid critical point (LLCP). In a recent study [
J. Mol. Liq.
, 2020,
320
, 114420], using molecular dynamics simulations and a core-softened potential approach, we have shown that adding a simple solute such as methanol can "kill" the density-anomalous behavior as the LLCP is suppressed by spontaneous crystallization in a hexagonal close packing (HCP) crystal near the LLPT. Now, we extend this work to realize how longer-chain alcohols will affect the complex behavior of water-alcohol mixtures in the supercooled regime. Besides core-softened (CS) methanol, ethanol and 1-propanol were added to a system of identical particles that interact through the continuous shouldered well (CSW) potential. We observed that the density anomaly gradually decreases its extension in phase diagrams until it disappears with the growth of the non-polar chain and the alcohol concentration, different from the liquid-liquid phase transition (and the LLCP), which remained present in all analyzed mixtures, according to
Nature
, 2001,
409
, 692. For our model, the longer non-polar chains and higher concentrations gradually impact the competition between the scales in the CS potential, leading to a gradual disappearing of the anomalies until the TMD total disappearance is observed when the first coordination shell structure is also affected: short-range ordering is favored, leading to less competition between short- and long-range ordering and, consequently, to the extinction of anomalies. Also, the non-polar chain size and concentration have an effect on the solid phases, favoring the hexagonal close packed (HCP) solid and the amorphous solid phase over the body-centered cubic (BCC) crystal. These findings help to elucidate the behavior of water solutions in the supercooled regime and indicate that the LLCP can be observed in systems without density-anomalous behavior.
Water is the most anomalous material on Earth, with a long list of thermodynamic, dynamic and structural behaviors that deviate from what is expected. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d1cp00751c |