The influence of ruthenium substitution in LaCoO 3 towards bi-functional electrocatalytic activity for rechargeable Zn–air batteries
The rechargeable zinc–air battery is a clean technology for energy storage applications but is impeded by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during its cycling. Herein, a series of lanthanum cobaltate based perovskites are synthesised with th...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-10, Vol.8 (39), p.20612-20620 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20620 |
---|---|
container_issue | 39 |
container_start_page | 20612 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Chandrappa, Shivaraju Guddehalli Moni, Prabu Chen, Dehong Karkera, Guruprakash Prakasha, Kunkanadu R. Caruso, Rachel A. Prakash, Annigere S. |
description | The rechargeable zinc–air battery is a clean technology for energy storage applications but is impeded by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during its cycling. Herein, a series of lanthanum cobaltate based perovskites are synthesised with the B-site cation deficiencies in the structure occupied by Ru substitution: LaCo
1−x
Ru
x
O
3−δ
(
x
= 0, 0.1, 0.2, 0.3 and 0.5). These compositions were designed to enhance the OER/ORR activities, which are two vital reactions for rechargeable Zn–air batteries. Powder X-ray diffraction analysis revealed that increasing the Ru substitution >20% (
x
> 0.2) alters the LaCoO
3
crystal structure from rhombohedral to orthorhombic. Photoelectron spectroscopy studies reveal that the surface oxygen vacancies increased in the Ru substituted catalyst, a property important for enhancing the OER/ORR efficiency. The LaCo
0.8
Ru
0.2
O
3−δ
(LCRO82) catalyst exhibits promising electrocatalytic activities in both the OER and the ORR in 0.1 M KOH solution. Furthermore, the LCRO82 catalyst was evaluated as a cathode for rechargeable Zn–air battery applications displaying a high power density of 136 mW cm
−2
at a current density of 175 mA cm
−2
and a stable charge–discharge voltage gap of 0.78 V after 1440 cycles, with excellent cycling stability over 240 h. |
doi_str_mv | 10.1039/D0TA06673G |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TA06673G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D0TA06673G</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76G-3e6ed9d59bc51bae70613daed9b0fae2283ade417bde2e8ddfac9141de311473</originalsourceid><addsrcrecordid>eNpFULFOwzAUtBBIVKULX-AZKWDHqZOMVYGCVKkDnViiZ_uZGqUxsh1QNiZ-gD_kS0gFglvudHe64Qg55-ySM1FfXbPtgklZitURmeRszrKyqOXxn66qUzKL8ZmNqBiTdT0hH9sdUtfZtsdOI_WWhj7tsHP9nsZexeRSn5zvxg5dw9JvqKDJv0EwkSqX2b7Thxhaii3qFLyGBO2QnKYwJq8uDdT6QAPqHYQnBNUifey-3j_BBaogJQwO4xk5sdBGnP3ylDzc3myXd9l6s7pfLtaZLuUqEyjR1GZeKz3nCrBkkgsDo6eYBczzSoDBgpfKYI6VMRZ0zQtuUHBelGJKLn5WdfAxBrTNS3B7CEPDWXO4sPm_UHwD08ho7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The influence of ruthenium substitution in LaCoO 3 towards bi-functional electrocatalytic activity for rechargeable Zn–air batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chandrappa, Shivaraju Guddehalli ; Moni, Prabu ; Chen, Dehong ; Karkera, Guruprakash ; Prakasha, Kunkanadu R. ; Caruso, Rachel A. ; Prakash, Annigere S.</creator><creatorcontrib>Chandrappa, Shivaraju Guddehalli ; Moni, Prabu ; Chen, Dehong ; Karkera, Guruprakash ; Prakasha, Kunkanadu R. ; Caruso, Rachel A. ; Prakash, Annigere S.</creatorcontrib><description>The rechargeable zinc–air battery is a clean technology for energy storage applications but is impeded by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during its cycling. Herein, a series of lanthanum cobaltate based perovskites are synthesised with the B-site cation deficiencies in the structure occupied by Ru substitution: LaCo
1−x
Ru
x
O
3−δ
(
x
= 0, 0.1, 0.2, 0.3 and 0.5). These compositions were designed to enhance the OER/ORR activities, which are two vital reactions for rechargeable Zn–air batteries. Powder X-ray diffraction analysis revealed that increasing the Ru substitution >20% (
x
> 0.2) alters the LaCoO
3
crystal structure from rhombohedral to orthorhombic. Photoelectron spectroscopy studies reveal that the surface oxygen vacancies increased in the Ru substituted catalyst, a property important for enhancing the OER/ORR efficiency. The LaCo
0.8
Ru
0.2
O
3−δ
(LCRO82) catalyst exhibits promising electrocatalytic activities in both the OER and the ORR in 0.1 M KOH solution. Furthermore, the LCRO82 catalyst was evaluated as a cathode for rechargeable Zn–air battery applications displaying a high power density of 136 mW cm
−2
at a current density of 175 mA cm
−2
and a stable charge–discharge voltage gap of 0.78 V after 1440 cycles, with excellent cycling stability over 240 h.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D0TA06673G</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-10, Vol.8 (39), p.20612-20620</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76G-3e6ed9d59bc51bae70613daed9b0fae2283ade417bde2e8ddfac9141de311473</citedby><cites>FETCH-LOGICAL-c76G-3e6ed9d59bc51bae70613daed9b0fae2283ade417bde2e8ddfac9141de311473</cites><orcidid>0000-0003-3752-6316 ; 0000-0003-2389-5292 ; 0000-0002-3826-7005 ; 0000-0003-4922-2256 ; 0000-0002-9001-5550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chandrappa, Shivaraju Guddehalli</creatorcontrib><creatorcontrib>Moni, Prabu</creatorcontrib><creatorcontrib>Chen, Dehong</creatorcontrib><creatorcontrib>Karkera, Guruprakash</creatorcontrib><creatorcontrib>Prakasha, Kunkanadu R.</creatorcontrib><creatorcontrib>Caruso, Rachel A.</creatorcontrib><creatorcontrib>Prakash, Annigere S.</creatorcontrib><title>The influence of ruthenium substitution in LaCoO 3 towards bi-functional electrocatalytic activity for rechargeable Zn–air batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The rechargeable zinc–air battery is a clean technology for energy storage applications but is impeded by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during its cycling. Herein, a series of lanthanum cobaltate based perovskites are synthesised with the B-site cation deficiencies in the structure occupied by Ru substitution: LaCo
1−x
Ru
x
O
3−δ
(
x
= 0, 0.1, 0.2, 0.3 and 0.5). These compositions were designed to enhance the OER/ORR activities, which are two vital reactions for rechargeable Zn–air batteries. Powder X-ray diffraction analysis revealed that increasing the Ru substitution >20% (
x
> 0.2) alters the LaCoO
3
crystal structure from rhombohedral to orthorhombic. Photoelectron spectroscopy studies reveal that the surface oxygen vacancies increased in the Ru substituted catalyst, a property important for enhancing the OER/ORR efficiency. The LaCo
0.8
Ru
0.2
O
3−δ
(LCRO82) catalyst exhibits promising electrocatalytic activities in both the OER and the ORR in 0.1 M KOH solution. Furthermore, the LCRO82 catalyst was evaluated as a cathode for rechargeable Zn–air battery applications displaying a high power density of 136 mW cm
−2
at a current density of 175 mA cm
−2
and a stable charge–discharge voltage gap of 0.78 V after 1440 cycles, with excellent cycling stability over 240 h.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFULFOwzAUtBBIVKULX-AZKWDHqZOMVYGCVKkDnViiZ_uZGqUxsh1QNiZ-gD_kS0gFglvudHe64Qg55-ySM1FfXbPtgklZitURmeRszrKyqOXxn66qUzKL8ZmNqBiTdT0hH9sdUtfZtsdOI_WWhj7tsHP9nsZexeRSn5zvxg5dw9JvqKDJv0EwkSqX2b7Thxhaii3qFLyGBO2QnKYwJq8uDdT6QAPqHYQnBNUifey-3j_BBaogJQwO4xk5sdBGnP3ylDzc3myXd9l6s7pfLtaZLuUqEyjR1GZeKz3nCrBkkgsDo6eYBczzSoDBgpfKYI6VMRZ0zQtuUHBelGJKLn5WdfAxBrTNS3B7CEPDWXO4sPm_UHwD08ho7Q</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Chandrappa, Shivaraju Guddehalli</creator><creator>Moni, Prabu</creator><creator>Chen, Dehong</creator><creator>Karkera, Guruprakash</creator><creator>Prakasha, Kunkanadu R.</creator><creator>Caruso, Rachel A.</creator><creator>Prakash, Annigere S.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3752-6316</orcidid><orcidid>https://orcid.org/0000-0003-2389-5292</orcidid><orcidid>https://orcid.org/0000-0002-3826-7005</orcidid><orcidid>https://orcid.org/0000-0003-4922-2256</orcidid><orcidid>https://orcid.org/0000-0002-9001-5550</orcidid></search><sort><creationdate>20201013</creationdate><title>The influence of ruthenium substitution in LaCoO 3 towards bi-functional electrocatalytic activity for rechargeable Zn–air batteries</title><author>Chandrappa, Shivaraju Guddehalli ; Moni, Prabu ; Chen, Dehong ; Karkera, Guruprakash ; Prakasha, Kunkanadu R. ; Caruso, Rachel A. ; Prakash, Annigere S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76G-3e6ed9d59bc51bae70613daed9b0fae2283ade417bde2e8ddfac9141de311473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrappa, Shivaraju Guddehalli</creatorcontrib><creatorcontrib>Moni, Prabu</creatorcontrib><creatorcontrib>Chen, Dehong</creatorcontrib><creatorcontrib>Karkera, Guruprakash</creatorcontrib><creatorcontrib>Prakasha, Kunkanadu R.</creatorcontrib><creatorcontrib>Caruso, Rachel A.</creatorcontrib><creatorcontrib>Prakash, Annigere S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrappa, Shivaraju Guddehalli</au><au>Moni, Prabu</au><au>Chen, Dehong</au><au>Karkera, Guruprakash</au><au>Prakasha, Kunkanadu R.</au><au>Caruso, Rachel A.</au><au>Prakash, Annigere S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of ruthenium substitution in LaCoO 3 towards bi-functional electrocatalytic activity for rechargeable Zn–air batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-10-13</date><risdate>2020</risdate><volume>8</volume><issue>39</issue><spage>20612</spage><epage>20620</epage><pages>20612-20620</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The rechargeable zinc–air battery is a clean technology for energy storage applications but is impeded by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during its cycling. Herein, a series of lanthanum cobaltate based perovskites are synthesised with the B-site cation deficiencies in the structure occupied by Ru substitution: LaCo
1−x
Ru
x
O
3−δ
(
x
= 0, 0.1, 0.2, 0.3 and 0.5). These compositions were designed to enhance the OER/ORR activities, which are two vital reactions for rechargeable Zn–air batteries. Powder X-ray diffraction analysis revealed that increasing the Ru substitution >20% (
x
> 0.2) alters the LaCoO
3
crystal structure from rhombohedral to orthorhombic. Photoelectron spectroscopy studies reveal that the surface oxygen vacancies increased in the Ru substituted catalyst, a property important for enhancing the OER/ORR efficiency. The LaCo
0.8
Ru
0.2
O
3−δ
(LCRO82) catalyst exhibits promising electrocatalytic activities in both the OER and the ORR in 0.1 M KOH solution. Furthermore, the LCRO82 catalyst was evaluated as a cathode for rechargeable Zn–air battery applications displaying a high power density of 136 mW cm
−2
at a current density of 175 mA cm
−2
and a stable charge–discharge voltage gap of 0.78 V after 1440 cycles, with excellent cycling stability over 240 h.</abstract><doi>10.1039/D0TA06673G</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3752-6316</orcidid><orcidid>https://orcid.org/0000-0003-2389-5292</orcidid><orcidid>https://orcid.org/0000-0002-3826-7005</orcidid><orcidid>https://orcid.org/0000-0003-4922-2256</orcidid><orcidid>https://orcid.org/0000-0002-9001-5550</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-10, Vol.8 (39), p.20612-20620 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0TA06673G |
source | Royal Society Of Chemistry Journals 2008- |
title | The influence of ruthenium substitution in LaCoO 3 towards bi-functional electrocatalytic activity for rechargeable Zn–air batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20ruthenium%20substitution%20in%20LaCoO%203%20towards%20bi-functional%20electrocatalytic%20activity%20for%20rechargeable%20Zn%E2%80%93air%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Chandrappa,%20Shivaraju%20Guddehalli&rft.date=2020-10-13&rft.volume=8&rft.issue=39&rft.spage=20612&rft.epage=20620&rft.pages=20612-20620&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D0TA06673G&rft_dat=%3Ccrossref%3E10_1039_D0TA06673G%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |