Application of MOF-derived transition metal oxides and composites as anodes for lithium-ion batteries

Metal-organic frameworks (MOFs) have potential application prospects in the electrochemical energy storage and conversion area on account of their high specific surface area, high porosity, tunable pore size, and structural diversity when compared to traditional porous materials. In order to expand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry frontiers 2020-12, Vol.7 (24), p.4939-4955
Hauptverfasser: Tan, Xiaohong, Wu, Yongbo, Lin, Xiaoming, Zeb, Akif, Xu, Xuan, Luo, Yifan, Liu, Jincheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal-organic frameworks (MOFs) have potential application prospects in the electrochemical energy storage and conversion area on account of their high specific surface area, high porosity, tunable pore size, and structural diversity when compared to traditional porous materials. In order to expand the application scope of MOFs, thermal decomposition can be carried out via calcination treatment in order to convert them into porous metal oxide materials. In this review, we summarize the synthetic methods of MOF-derived transition metal oxide (TMO) composites and their applications in lithium-ion batteries (LIBs) as anodes. A variety of TMOs and composites with different structures and morphologies derived from MOFs based on several types of ligands, including 1,4-benzenedicarboxylic acid (H 2 BDC), 1,3,5-benzenetricarboxylic acid (H 3 BTC), 2-methylimidazole, ferricyanide, and other unusual organic linkers, have been discussed. Finally, current challenges and possible solutions of MOF-derived anode materials have been proposed. Research progress of MOF-derived metal oxides and composites in lithium ion batteries has been presented based on different organic linkers.
ISSN:2052-1553
2052-1545
2052-1553
DOI:10.1039/d0qi00929f