Tunable hydantoin and base binary organocatalysts in ring-opening polymerizations
A (thio)hydantoin (HHyd) and organic superbase binary cocatalyst is illustrated as a tunable catalytic tool that enabled the efficient ring-opening polymerization (ROP) of various cyclic ester monomers. A series of designed HHyd molecules with diverse substitutions on the imidazolidine-2,4-dione rin...
Gespeichert in:
Veröffentlicht in: | Polymer chemistry 2020-09, Vol.11 (35), p.5669-568 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A (thio)hydantoin (HHyd) and organic superbase binary cocatalyst is illustrated as a tunable catalytic tool that enabled the efficient ring-opening polymerization (ROP) of various cyclic ester monomers. A series of designed HHyd molecules with diverse substitutions on the imidazolidine-2,4-dione ring at N1, N3, C5, and C2 allowed the fine tuning of the acidity, steric demand, and nucleophilicity of the (thio)hydantoinate cocatalyst. A partner organic superbase abstracted either the N1-H or N3-H proton of HHyd, leading to a conjugate acid acting as a H-bond donor in electrophilic activations. Commercial Brønsted organic bases, including tertiary amines, amidines, guanidines, and phosphazene, were evaluated for HHyd/base cocatalysis. The amidine DBU and guanidines TMG, TBD, and MTBD were screened as effective bases. Two minimal hydantoins, 1,5,5-trimethylimidazolidine-2,4-dione (HHyd2) and 3,5,5-trimethylimidazolidine-2,4-dione (HHyd3), partnered with DBU showed optimal performances, with near-quantitative conversions and narrow dispersities, in the ROPs of various cyclic ester monomers. HHyd2/DBU obviated the potential for epimerization and/or transesterification in the ROP of
l
-lactide (LLA). The controlled/living nature of the ROP of trimethylene carbonate (TMC) was validated. ROPs of TMC in solvents at room temperature and in bulk at 90 °C were successful: a short reaction time (6 h
vs.
0.5 h), high conversion (92%
vs.
97%), and narrow dispersity (1.13
vs.
1.12) were observed (solvent
vs.
bulk). Homopolymers and diblock copolymers of P(TMC-
b
-LLA) were prepared. The controlled/living nature of the ROPs was supported through kinetics and chain extension experiments, and MALDI-ToF-MS characterizations. A cooperative activation mechanism was proposed and validated using NMR titrations, in which the hydantoinate activated the chain end and the conjugate acid activated the monomer. The high relative cell viability (>90%) of poly(trimethylene carbonate) samples containing the cocatalyst HHyd2/DBU tested
via
MTT assays on HaCat cells confirmed the desirable biosafety and biocompatibility.
A (thio)hydantoin (
HHyd
) was deprotonated by a Brønsted base (
B
) to afford iminolate
Hyd
1
or
Hyd
3
that activated polymer chain-end (
P
), the conjugate acid (
B-H
+
) activated monomer (
M
). |
---|---|
ISSN: | 1759-9954 1759-9962 |
DOI: | 10.1039/d0py00812e |