Interaction effects and superconductivity signatures in twisted double-bilayer WSe 2

Twisted bilayer graphene provides a new two-dimensional platform for studying electron interaction phenomena and flat band properties such as correlated insulator transition, superconductivity and ferromagnetism at certain magic angles. Here, we present experimental characterization of interaction e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale horizons 2020-08, Vol.5 (9), p.1309-1316
Hauptverfasser: An, Liheng, Cai, Xiangbin, Pei, Ding, Huang, Meizhen, Wu, Zefei, Zhou, Zishu, Lin, Jiangxiazi, Ying, Zhehan, Ye, Ziqing, Feng, Xuemeng, Gao, Ruiyan, Cacho, Cephise, Watson, Matthew, Chen, Yulin, Wang, Ning
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Twisted bilayer graphene provides a new two-dimensional platform for studying electron interaction phenomena and flat band properties such as correlated insulator transition, superconductivity and ferromagnetism at certain magic angles. Here, we present experimental characterization of interaction effects and superconductivity signatures in p-type twisted double-bilayer WSe 2 . Enhanced interlayer interactions are observed when the twist angle decreases to a few degrees as reflected by the high-order satellites in the electron diffraction patterns taken from the reconstructed domains from a conventional moiré superlattice. In contrast to twisted bilayer graphene, there is no specific magic angle for twisted WSe 2 . Flat band properties are observable at twist angles ranging from 1 to 4 degrees. Our work has facilitated future study in the area of flat band related properties in twisted transition metal dichalcogenide layered structures.
ISSN:2055-6756
2055-6764
DOI:10.1039/D0NH00248H