The remarkably improved hydrogen storage performance of MgH 2 by the synergetic effect of an FeNi/rGO nanocomposite
Magnesium hydride (MgH2) has been considered as a promising hydrogen storage material for buildings that are powered by hydrogen energy, but its practical application is hampered by poor kinetics and unstable thermodynamics. Herein, we describe a feasible method for preparing FeNi nanoparticles disp...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2020-04, Vol.49 (13), p.4146-4154 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnesium hydride (MgH2) has been considered as a promising hydrogen storage material for buildings that are powered by hydrogen energy, but its practical application is hampered by poor kinetics and unstable thermodynamics. Herein, we describe a feasible method for preparing FeNi nanoparticles dispersed on reduced graphene oxide nanosheets (FeNi/rGO), and we confirmed that excellent catalytic effects increased the hydrogen storage performance of MgH2. 5 wt% FeNi/rGO-modified MgH2 began to release hydrogen at 230 °C and liberated 6.5 wt% H2 within 10 min at 300 °C. As for the hydrogenation process, the dehydrogenated sample absorbed 5.4 wt% H2 within 20 min at 125 °C under a hydrogen pressure of 32 bar. More importantly, a hydrogen capacity of 6.9 wt% was maintained after 50 cycles without compromising the kinetics during each cycle. A unique catalytic mechanism promoted synergetic effects between the in situ-formed Mg2Ni/Mg2NiH4, Fe, and rGO that efficiently promoted hydrogen dissociation and diffusion along the Mg/MgH2 interface, anchored the catalyst, and prevented MgH2 from aggregation and growth. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/D0DT00230E |