Hydrogen desorption from the surface and subsurface of cobalt
The influence of coverage on the diffusion of hydrogen into the subsurface of cobalt was studied using density functional theory (DFT) and temperature programmed desorption (TPD). DFT calculations show that as the hydrogen coverage on Co(0001) increases, the barrier for hydrogen diffusion into the b...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2020-07, Vol.22 (27), p.15281-15287 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The influence of coverage on the diffusion of hydrogen into the subsurface of cobalt was studied using density functional theory (DFT) and temperature programmed desorption (TPD). DFT calculations show that as the hydrogen coverage on Co(0001) increases, the barrier for hydrogen diffusion into the bulk decreases by 20%. Additionally, subsurface hydrogen on a hydrogen covered surface was found to be more stable when compared to a clean cobalt surface. To test these theoretical findings experimentally, excited hydrogen was used in an ultra-high vacuum environment to access higher hydrogen coverages. Our TPD studies showed that at high hydrogen coverages, a sharp low temperature feature appeared, indicating the stabilization of subsurface hydrogen. Further DFT calculations indicate that this sharp low temperature feature results from associative hydrogen desorption from a hydrogen saturated surface with a population of subsurface hydrogen. Microkinetic modelling was used to model the TPD spectra for hydrogen desporption from cobalt with and without subsurface hydrogen, showing reasonable agreement with experiment.
Increased hydrogen coverage on cobalt promotes hydrogen diffusion into the subsurface. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d0cp02410d |