Meters-long, sewable, wearable conductive polymer wires for thermoelectric applications
There is a great need for flexible and wearable power generators. Wire-shaped thermoelectric (TE) devices provide a solution that can convert waste heat to electricity. Here, meters-long, sewable and wearable conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) wires are fa...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020, Vol.8 (5), p.1571-1576 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is a great need for flexible and wearable power generators. Wire-shaped thermoelectric (TE) devices provide a solution that can convert waste heat to electricity. Here, meters-long, sewable and wearable conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) wires are fabricated based on the removal of the outer-ring PSS. The wires are sewable and exhibit a conductivity of 1433 S cm
−1
at room temperature, a Seebeck coefficient of 21.3 μV K
−1
and a power factor (PF) of 65 μW (mK
2
)
−1
. The wires have a cross-sectional area of about 570 μm
2
and a tensile strength of about 200 MPa, and show stable electrical conductivity in air and under different temperatures. Under a temperature gradient (about 3 K) generated from hands and room temperature, a TE generator with 34 pairs of PEDOT:PSS and copper wires assembled on a fabric outputs a voltage of 2.2 mV. It shows potential for applications in wearable devices.
Meters-long, sewable conductive polymer wires with high thermoelectric performance and stability have been fabricated based on a replacement chemical reaction. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/c9tc06079k |