Nanoporous photonic crystals with tailored surface chemistry for ionic copper sensing

We present a study on optical and surface chemistry engineering of nanoporous photonic crystals as sensing platforms for detection of ionic copper. The optical sensing system combines glutaraldehyde-crosslinked double-layered polyethyleneimine (PEI-GA-PEI)-functionalized nanoporous anodic alumina gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2019, Vol.7 (39), p.12278-12289
Hauptverfasser: Eckstein, Chris, Law, Cheryl Suwen, Lim, Siew Yee, Kaur, Simarpreet, Kumeria, Tushar, Ferré-Borrull, Josep, Abell, Andrew D, Marsal, Lluís F, Santos, Abel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a study on optical and surface chemistry engineering of nanoporous photonic crystals as sensing platforms for detection of ionic copper. The optical sensing system combines glutaraldehyde-crosslinked double-layered polyethyleneimine (PEI-GA-PEI)-functionalized nanoporous anodic alumina gradient-index filters (NAA-GIFs) with reflection spectroscopy for label-free, selective detection of ionic copper in water matrices. The spectral position of the photonic stopband (PSB) of PEI-GA-PEI-functionalized NAA-GIFs is tuned across the visible-NIR spectral region to assess the impact of this optical parameter on the sensing performance of the system. Spectral shifts in the characteristic PSB (Δ λ PSB ) of PEI-GA-PEI-functionalized NAA-GIFs upon exposure to analytical solutions of ionic copper are used as a sensing parameter. Shifts in Δ λ PSB of these photonic crystals are monitored in real-time under dynamic flow conditions. Calibration of the sensing system with analytical solutions of ionic copper from 0.1 to 100 mM shows a dual sensing regime, at low (from 1 to 10 mM) and high (from 10 to 100 mM) concentrations, which is associated with conformational changes of the PEI-GA-PEI functional layer. The binding mechanism of Cu 2+ in PEI-GA-PEI-modified NAA-GIFs follows a Freundlich isotherm model. The performance of the PEI-GA-PEI-NAA-GIFs for real-life applications is demonstrated using environmental water. The system shows excellent correlation in both environmental and analytical water solutions. This study provides new opportunities to engineer portable optical sensing systems with tailor-designed features to detect ionic copper for environmental applications. We present a study on optical and surface chemistry engineering of nanoporous photonic crystals as sensing platforms for detection of ionic copper.
ISSN:2050-7526
2050-7534
DOI:10.1039/c9tc04438h