Reaction pathways and kinetics for tetra-alanine in hot, compressed liquid water
Proteins are abundant biochemical components of microalgae and food wastes that can be used as feedstocks for producing renewable bio-crude oils and value-added chemicals. We elucidated the reaction pathways of a model peptide, tetra-alanine, in hot, compressed liquid water and examined the effects...
Gespeichert in:
Veröffentlicht in: | Reaction chemistry & engineering 2019-07, Vol.4 (7), p.1237-1252 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proteins are abundant biochemical components of microalgae and food wastes that can be used as feedstocks for producing renewable bio-crude oils and value-added chemicals. We elucidated the reaction pathways of a model peptide, tetra-alanine, in hot, compressed liquid water and examined the effects of pH, temperature, and time. We developed a chemical kinetic model that incorporated pH effects and estimated rate parameters from the experimental data. pH influenced the dissociation states of tetra-alanine and the selectivity of reactions. Zwitterionic tetra-alanine predominately formed di-alanine and alanine anhydride as primary products. Anionic tetra-alanine preferentially underwent hydrolysis into tri-alanine, di-alanine, and alanine. The kinetic model provided an excellent correlation to the experimental data. Highly alkaline conditions mitigated yields of alanine anhydride, a N- and O-containing heterocycle representative of compounds that undesirably partition into bio-crude oils. Accordingly, highly alkaline conditions may offer processing conditions for lessening the heteroatom content of bio-crude oils.
pH alters the prevalence of the dissociation states of peptides, through acid-base equilibrium, and influences reaction selectivity under hydrothermal conditions. |
---|---|
ISSN: | 2058-9883 2058-9883 |
DOI: | 10.1039/c9re00023b |