Qualitative and quantitative differences between common control banding tools for nanomaterials in workplaces

A number of control banding (CB) tools have been developed specifically for managing the risk of exposure to engineered nanomaterials. However, data on the methodological differences between common CB tools for nanomaterials in workplaces are rare. A comparative study with different CB tools, such a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2019-10, Vol.9 (59), p.34512-34528
Hauptverfasser: Gao, Xiangjing, Zou, Hua, Zhou, Zanrong, Yuan, Weiming, Quan, Changjian, Zhang, Meibian, Tang, Shichuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A number of control banding (CB) tools have been developed specifically for managing the risk of exposure to engineered nanomaterials. However, data on the methodological differences between common CB tools for nanomaterials in workplaces are rare. A comparative study with different CB tools, such as Nanosafer, Stoffenmanager-Nano, Nanotool, Precautionary Matrix, ECguidance, IVAM Guidance, ISO, and ANSES, was performed to investigate their qualitative and quantitative differences in real exposure scenarios. These tools were developed for different purposes, with different application domains, methodological principles, and criteria. Multi-criteria analysis showed that there was a diverse distribution of these eight CB tools across different evaluation indicators. The total evaluation scores for Nanotool, Stoffenmanager-Nano, and Nanosafer were higher than the other tools. Quantitative comparisons demonstrated that ANSES, ECguidance, and IVAM Guidance tools were better in terms of information availability. Nanotool, Stoffenmanager-Nano, and ECguidance were better in terms of the sensitivity of outputs to changes in exposure parameters. The Nanotool, ANSES, and ECguidance tools were better in terms of accuracy of hazard outcomes evaluated with toxicological data. The Stoffenmanager-Nano, Nanotool, and Nanosafer tools' exposure scores for seven scenarios had a good correlation with measurement data. The Nanotool and Stoffenmanager-Nano tools had much higher comprehensive advantages based on quantitative and qualitative assessment. More comparative studies evaluating different tools are required, using more types of nanomaterials in real exposure scenarios. A number of control banding (CB) tools have been developed specifically for managing the risk of exposure to engineered nanomaterials.
ISSN:2046-2069
2046-2069
DOI:10.1039/c9ra06823f