Designing carbon conductive filament memristor devices for memory and electronic synapse applications

Electronic synaptic memristor systems have the potential to bring revolutionary change to traditional computer structures and to lay a solid foundation for the development of computer architectures simulating artificial brains. Among them, silver (Ag) or copper (Cu) filament-based memristor devices...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials horizons 2020-04, Vol.7 (4), p.116-1114
Hauptverfasser: Zhou, Zhenyu, Zhao, Jianhui, Chen, Andy Paul, Pei, Yifei, Xiao, Zuoao, Wang, Gong, Chen, Jingsheng, Fu, Guangsheng, Yan, Xiaobing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electronic synaptic memristor systems have the potential to bring revolutionary change to traditional computer structures and to lay a solid foundation for the development of computer architectures simulating artificial brains. Among them, silver (Ag) or copper (Cu) filament-based memristor devices have increasingly attracted attention due to their excellent functional properties in plasticity and as memristors. However, the randomly dynamic process of nucleation during device fabrication results in nonuniform switching parameters. Here, we demonstrate the viability of a high-performance neuromorphic memristor device based on a carbon conductive filament mechanism, with the advantages of high switching stability and low power consumption. The memristor is also able to emulate faithfully different functions of artificial synapses, including paired-pulse facilitation (PPF) and spike-timing-dependent plasticity (STDP). According to detailed electron energy loss spectroscopy (EELS) and transmission electron microscopy (TEM) characterization, it is confirmed that carbon conductive filaments are formed in aluminum nitride (AlN) films comprising the middle layer of the memristor. First principles calculations provide insight into the energetics of defects involved in the diffusion of carbon atoms into the AlN film. This work probes the viability of a new physical conduction mechanism for use in neuromorphic memristor performance, with evidence of improved device performance. Utilizing the instability of the edge atoms of graphene defects, carbon conductive filaments were formed under the regulation of the electric field and the synaptic function was achieved.
ISSN:2051-6347
2051-6355
DOI:10.1039/c9mh01684h