Infrared excited Er 3+ /Yb 3+ codoped NaLaMgWO 6 phosphors with intense green up-conversion luminescence and excellent temperature sensing performance
The Er3+/Yb3+-codoped NaLaMgWO6 phosphors were synthesized via a traditional high-temperature solid-state reaction method. The temperature sensing performance was thoroughly investigated by studying the temperature-dependent up-conversion (UC) emission intensity ratio in the range of 293-533 K. A re...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2019-07, Vol.48 (30), p.11382-11390 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Er3+/Yb3+-codoped NaLaMgWO6 phosphors were synthesized via a traditional high-temperature solid-state reaction method. The temperature sensing performance was thoroughly investigated by studying the temperature-dependent up-conversion (UC) emission intensity ratio in the range of 293-533 K. A remarkable enhancement of green UC emission, as well as enhanced temperature sensitivity, were observed by increasing the Yb3+ concentration. The maximum absolute sensor sensitivity was 2.29% K-1 at 533 K. When the pump power of the 980 nm laser increased from 200 to 1000 mW, a slightly elevated temperature from 293-307 K was achieved in the compounds. Using the prepared phosphors and a 940 nm NIR chip, a green-emitting LED device was developed to confirm the applicability of our prepared phosphors for solid-state lighting. As a temperature probe, the prepared phosphor detected that the temperature increased from 286 K to 315 K when the drive current was increased from 90 mA to 300 mA. These results suggest that the Er3+/Yb3+-codoped NaLaMgWO6 phosphors have a potential application in solid-state lighting and optical thermometry. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c9dt01970g |