Eggshell particle-reinforced hydrogels for bone tissue engineering: an orthogonal approach
Hydrogel-based biomimetic scaffolds have generated broad interest due to their tunable physical, chemical, and biological properties for bone tissue engineering applications. We fabricated eggshell microparticle (ESP) reinforced gelatin-based hydrogels to obtain mechanically stable and biologically...
Gespeichert in:
Veröffentlicht in: | Biomaterials science 2019-06, Vol.7 (7), p.2675-2685 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogel-based biomimetic scaffolds have generated broad interest due to their tunable physical, chemical, and biological properties for bone tissue engineering applications. We fabricated eggshell microparticle (ESP) reinforced gelatin-based hydrogels to obtain mechanically stable and biologically active three-dimensional (3D) constructs that can differentiate pre-mature cells into osteoblasts. Physical properties including swelling ratio, degradation, and mechanical properties of the composite hydrogels were investigated. Pre-osteoblasts were encapsulated within the ESP-reinforced hydrogels to study their differentiation and evaluate mineral deposition by these cells. The ESP-reinforced gels were then subcutaneously implanted in a rat model to determine their biocompatibility and degradation behaviors. The composite hydrogels have shown outstanding tunability in physical and biological properties holding substantial promise for engineering mineralized tissues (
e.g.
bone, cartilage, tooth, and tendon). These 3D scaffolds enabled the differentiation of pre-osteoblasts without the use of specialized osteogenic growth medium. The ESP-reinforced gels exhibited significant enhancement in mineralization by pre-osteoblasts. These behaviors are positively correlated with increasing concentrations of ESP. Findings suggest that our novel composite hydrogel exhibits superior mechanical properties and indicates a favorable
in vivo
response by subcutaneous implantation in a rat model.
Eggshell microparticle-reinforced hydrogels have been fabricated and characterized to obtain mechanically stable and biologically active scaffolds that can direct the differentiation of cells. |
---|---|
ISSN: | 2047-4830 2047-4849 |
DOI: | 10.1039/c9bm00230h |