Vertical flow assays based on core-shell SERS nanotags for multiplex prostate cancer biomarker detection
Rapid, simultaneous, and sensitive quantification of multiplex prostate biomarkers plays an important role in early diagnosis, especially for obese men and patients. Herein, a surface-enhanced Raman scattering (SERS)-based vertical flow assay (VFA) is presented for simultaneous detection of multiple...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2019-07, Vol.144 (13), p.451-459 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rapid, simultaneous, and sensitive quantification of multiplex prostate biomarkers plays an important role in early diagnosis, especially for obese men and patients. Herein, a surface-enhanced Raman scattering (SERS)-based vertical flow assay (VFA) is presented for simultaneous detection of multiplex prostate cancer biomarkers, such as prostate-specific antigen (PSA), carcinoembryonic antigen (CEA), and alpha-fetoprotein (AFP) on a single test spot. In practice, Raman dyes (RDs) encoded core-shell SERS nanotags instead of conventional gold colloids used in the colorimetric assay are employed in the sensing membrane of SERS based VFAs for multiplex protein detection. Because of the enhanced Raman signal of the core-shell nanostructure and the high surface area to volume ratio (SVR) of the porous sensing membrane, this proposed biosensor shows a wide linear dynamic range (LDR) with detection limits of 0.37, 0.43, and 0.26 pg mL
−1
for PSA, CEA, and AFP, respectively, suggesting that this approach can be a good candidate in point of care testing (POCT) for rapid and sensitive biomarker detection and has a huge potential in multiplex analysis and cancer diagnosis.
A core-shell SERS nanotag based VFA with a single test spot for multiplex biomarker detection at pg mL
−1
level with a wide LDR. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/c9an00733d |