Unique features of the generation-recombination noise in quasi-one-dimensional van der Waals nanoribbons

We describe the low-frequency current fluctuations, i.e. electronic noise, in quasi-one-dimensional ZrTe 3 van der Waals nanoribbons, which have recently attracted attention owing to their extraordinary high current carrying capacity. Whereas the low-frequency noise spectral density, S I / I 2 , rev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-11, Vol.1 (42), p.19749-19756
Hauptverfasser: Geremew, Adane K, Rumyantsev, Sergey, Bloodgood, Matthew A, Salguero, Tina T, Balandin, Alexander A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe the low-frequency current fluctuations, i.e. electronic noise, in quasi-one-dimensional ZrTe 3 van der Waals nanoribbons, which have recently attracted attention owing to their extraordinary high current carrying capacity. Whereas the low-frequency noise spectral density, S I / I 2 , reveals 1/ f behavior near room temperature, it is dominated by the Lorentzian bulges of the generation-recombination noise at low temperatures ( I is the current and f is the frequency). Unexpectedly, the corner frequency of the observed Lorentzian peaks shows strong sensitivity to the applied source-drain bias. This dependence on electric field can be explained by the Frenkel-Poole effect in the scenario where the voltage drop happens predominantly on the defects, which block the quasi-1D conduction channels. We also have found that the activation energy of the characteristic frequencies of the G-R noise in quasi-1D ZrTe 3 is defined primarily by the temperature dependence of the capture cross-section of the defects rather than by their energy position. These results are important for the application of quasi-1D van der Waals materials in ultimately downscaled electronics. We describe the low-frequency current fluctuations, i.e. electronic noise, in quasi-one-dimensional ZrTe 3 van der Waals nanoribbons, which have recently attracted attention owing to their extraordinary high current carrying capacity.
ISSN:2040-3364
2040-3372
DOI:10.1039/c8nr06984k