Low-temperature synthesis of 2D MoS 2 on a plastic substrate for a flexible gas sensor

The efficient synthesis of two-dimensional molybdenum disulfide (2D MoS2) at low temperatures is essential for use in flexible devices. In this study, 2D MoS2 was grown directly at a low temperature of 200 °C on both hard (SiO2) and soft substrates (polyimide (PI)) using chemical vapor deposition (C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-05, Vol.10 (19), p.9338-9345
Hauptverfasser: Zhao, Yuxi, Song, Jeong-Gyu, Ryu, Gyeong Hee, Ko, Kyung Yong, Woo, Whang Je, Kim, Youngjun, Kim, Donghyun, Lim, Jun Hyung, Lee, Sunhee, Lee, Zonghoon, Park, Jusang, Kim, Hyungjun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficient synthesis of two-dimensional molybdenum disulfide (2D MoS2) at low temperatures is essential for use in flexible devices. In this study, 2D MoS2 was grown directly at a low temperature of 200 °C on both hard (SiO2) and soft substrates (polyimide (PI)) using chemical vapor deposition (CVD) with Mo(CO)6 and H2S. We investigated the effect of the growth temperature and Mo concentration on the layered growth by Raman spectroscopy and microscopy. 2D MoS2 was grown by using low Mo concentration at a low temperature. Through optical microscopy, Raman spectroscopy, X-ray photoemission spectroscopy, photoluminescence, and transmission electron microscopy measurements, MoS2 produced by low-temperature CVD was determined to possess a layered structure with good uniformity, stoichiometry, and a controllable number of layers. Furthermore, we demonstrated the realization of a 2D MoS2-based flexible gas sensor on a PI substrate without any transfer processes, with competitive sensor performance and mechanical durability at room temperature. This fabrication process has potential for burgeoning flexible and wearable nanotechnology applications.
ISSN:2040-3364
2040-3372
DOI:10.1039/c8nr00108a