Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery
Traditional machine learning (ML) metrics overestimate model performance for materials discovery. We introduce (1) leave-one-cluster-out cross-validation (LOCO CV) and (2) a simple nearest-neighbor benchmark to show that model performance in discovery applications strongly depends on the problem, da...
Gespeichert in:
Veröffentlicht in: | Molecular systems design & engineering 2018-10, Vol.3 (5), p.819-825 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional machine learning (ML) metrics overestimate model performance for materials discovery. We introduce (1) leave-one-cluster-out cross-validation (LOCO CV) and (2) a simple nearest-neighbor benchmark to show that model performance in discovery applications strongly depends on the problem, data sampling, and extrapolation. Our results suggest that ML-guided iterative experimentation may outperform standard high-throughput screening for discovering breakthrough materials like high-
T
c
superconductors with ML.
Traditional machine learning (ML) metrics overestimate model performance for materials discovery. |
---|---|
ISSN: | 2058-9689 2058-9689 |
DOI: | 10.1039/c8me00012c |