Phase transition and superconductivity in ReS 2 , ReSe 2 and ReTe 2
Transition metal dichalcogenides have attracted significant attention due to both fundamental interest and their potential applications. Here, we have systematically explored the crystal structures of ReX2 (X = S, Se, and Te) over the pressure range of 0-300 GPa, employing swarm-intelligence-based s...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2018-11, Vol.20 (46), p.29472-29479 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transition metal dichalcogenides have attracted significant attention due to both fundamental interest and their potential applications. Here, we have systematically explored the crystal structures of ReX2 (X = S, Se, and Te) over the pressure range of 0-300 GPa, employing swarm-intelligence-based structure prediction methodology. Several new structures are found to be stable at high pressures. The calculated enthalpy of formation suggested that all predicted high-pressure structures are stable against decomposition into elemental end-members. Moreover, we found that the simulated X-ray diffraction patterns of ReSe2 are in good agreement with experimental data. Pressure-induced metallization of ReX2 has been revealed from the analysis of its electronic structure. Our electron-phonon coupling calculations indicate ReSe2 and ReTe2 are superconducting phases at high pressures. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c8cp05333b |