Interconnected molybdenum disulfide@tin disulfide heterojunctions with different morphologies: a type of enhanced counter electrode for dye-sensitized solar cells
In this work, we successfully synthesized SnS 2 nanoparticles, a hollowed-out netty MoS 2 (nMoS 2 ) nanostructure, a flower-like MoS 2 (fMoS 2 ) nanostructure, an nMoS 2 @SnS 2 heterostructure, and an fMoS 2 @SnS 2 heterostructure via a simple and facile hydrothermal process. We used powder X-ray di...
Gespeichert in:
Veröffentlicht in: | CrystEngComm 2018, Vol.2 (9), p.1252-1263 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we successfully synthesized SnS
2
nanoparticles, a hollowed-out netty MoS
2
(nMoS
2
) nanostructure, a flower-like MoS
2
(fMoS
2
) nanostructure, an nMoS
2
@SnS
2
heterostructure, and an fMoS
2
@SnS
2
heterostructure
via
a simple and facile hydrothermal process. We used powder X-ray diffractograms to verify purity and crystalline phases of the as-prepared samples. Additionally, the structures and morphologies of as-prepared components were checked by X-ray photoelectron spectroscopy analysis (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). A dye-sensitized solar cell (DSSC) assembled with this original heterostructure as a counter electrode (CE) displayed a splendid power conversion efficiency (PCE) of 7.63% along with stable catalytic performance for triiodide reduction. This is better than other DSSCs including: SnS
2
CE (6.67%), nMoS
2
CE (5.78%), fMoS
2
CE (5.37%), and fMoS
2
@SnS
2
CE (7.08%). According to our experimental results, we believe that the outstanding performance of nMoS
2
@SnS
2
heterostructures for a DSSC is because of their characteristic crystal structure, which may contribute to playing a heterogeneous and synergistic effect between the active materials, optimize dispersity of the samples, avoid recombination of electron-hole pairs to accelerate velocity of triiodide reduction, and enhance stability in a I
3
−
/I
−
electrolyte. Hence, the nMoS
2
@SnS
2
heterostructure can play a better role in DSSCs with excellent performance and superior stability as an efficient CE.
The MoS
2
@SnS
2
heterojunctions have been synthesized and displayed the enhanced performance due to the specific crystal structure. |
---|---|
ISSN: | 1466-8033 1466-8033 |
DOI: | 10.1039/c8ce00077h |