Single-walled carbon nanotube/polystyrene core-shell hybrids: synthesis and photoluminescence properties

The formation of core-shell structures has permitted to improve greatly the emission properties of inorganic quantum dots. Single-walled carbon nanotubes, thanks to their emission in the near infrared region, are promising materials for optoelectronics. However, the extreme sensitivity of nanotubes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2018, Vol.6 (17), p.4786-4792
Hauptverfasser: Orcin-Chaix, L, Trippé-Allard, G, Voisin, C, Okuno, H, Derycke, V, Lauret, J.-S, Campidelli, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The formation of core-shell structures has permitted to improve greatly the emission properties of inorganic quantum dots. Single-walled carbon nanotubes, thanks to their emission in the near infrared region, are promising materials for optoelectronics. However, the extreme sensitivity of nanotubes to their environment hinders their applications. Thus, the fabrication of tailor-made functional hybrid materials that preserve the optical properties of SWNTs and facilitate their manipulation is extremely important. Here, we describe the synthesis of core-shell nanotube materials made of SWNTs and polystyrene. We developed a two-step strategy that permits to form a stable and homogeneous layer of polymer around the nanotubes by adding first polystyrene via the micelle swelling method and then by locking the structure via radical polymerisation in micelles of styrene and divinylbenzene. After polymerisation and redispersion, the nanotube hybrids can be easily manipulated in solution; they still exhibited photoluminescence properties both in solution and in the solid state demonstrating that the SWNTs embedded in their polystyrene shell are isolated one from each other. Core-shell structures made of SWNTs and polystyrene are synthesized; the hybrids can be easily manipulated in solution and exhibit photoluminescence in film.
ISSN:2050-7526
2050-7534
DOI:10.1039/c7tc05565j