Magnetically responsive biopolymeric multilayer films for local hyperthermia

We present a proof of concept on the use of thermomagnetic polymer films (TMFs) as heating devices for magnetic hyperthermia in vitro. The TMFs were prepared through spray assisted layer-by-layer assembly of polysaccharides and magnetic iron oxide nanoparticles, yielding an alternate magnetic-polyme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2017-11, Vol.5 (43), p.857-8578
Hauptverfasser: Criado, M, Sanz, B, Goya, G. F, Mijangos, C, Hernández, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a proof of concept on the use of thermomagnetic polymer films (TMFs) as heating devices for magnetic hyperthermia in vitro. The TMFs were prepared through spray assisted layer-by-layer assembly of polysaccharides and magnetic iron oxide nanoparticles, yielding an alternate magnetic-polymer multilayer structure. By applying a remote alternating magnetic field (AMF) ( f = 180 kHz; H = 35 kA m −1 ) we increased the temperature of the TMFs in a thickness-dependent way, up to 12 °C within the first 5 minutes. To test our films as heating substrates for magnetic hyperthermia, a series of in vitro experiments were designed using human neuroblastoma SH-SY5Y cells, known by their tolerance to thermal stress. The application of two AMF cycles (30 minutes each) showed that the exogenous magnetic hyperthermia resulted in an 85% reduction of cell viability. This capacity of the TMFs of hyperthermia-mediated cell killing using a remote AMF opens new options for the treatment of small and superficial tumor lesions by means of remotely-triggered magnetic hyperthermia. Thermomagnetic polymer films (TMFs) proven as heating devices for in vitro magnetic hyperthermia.
ISSN:2050-750X
2050-7518
DOI:10.1039/c7tb02361h