A self-healable and tough nanocomposite hydrogel crosslinked by novel ultrasmall aluminum hydroxide nanoparticles

Self-healing hydrogels like tissues or organs which are repaired automatically in response to damage show great promise. However, it remains a challenge to develop novel functional nanoparticles as crosslinkers to prepare tough and self-healing nanocomposite hydrogels. Here, we report the preparatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2017-10, Vol.9 (4), p.1547-15476
Hauptverfasser: Jiang, Haoyang, Zhang, Gongzheng, Li, Feibo, Zhang, Yaqian, Lei, Yu, Xia, Yanhong, Jin, Xianghu, Feng, Xianqi, Li, Huanjun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-healing hydrogels like tissues or organs which are repaired automatically in response to damage show great promise. However, it remains a challenge to develop novel functional nanoparticles as crosslinkers to prepare tough and self-healing nanocomposite hydrogels. Here, we report the preparation of water-soluble ultrasmall aluminum hydroxide nanoparticles with a diameter of 2-3 nm through a simple sol-gel method. Furthermore, a tough nanocomposite hydrogel is prepared by the in situ copolymerization of acylamide and 2-acrylamido-2-methyl propane sulfonic acid in the presence of aluminum hydroxide nanoparticles. The resulting hydrogels exhibit high compressive strength of 18.9 MPa and an elongation at break of ∼2100%. Importantly, the Al-NC gel displayed a high self-healing efficiency of 86% without any external stimulus at room temperature. Moreover, we found an interesting multi-hierarchical porous morphology of the Al-NC gel depending on the contents of the aluminum hydroxide nanoparticles. The tough nanocomposite hydrogel might provide a novel promising avenue for designing advanced self-healable soft materials for various biomedical applications. A tough hydrogel crosslinked by novel and ultrasmall aluminum hydroxide nanoparticles exhibits high self-healing efficiency.
ISSN:2040-3364
2040-3372
DOI:10.1039/c7nr04722c