Enzyme-assisted peptide folding, assembly and anti-cancer properties
The α-helix is the most prevalent conformation in proteins. However, formation of the α-helical conformation remains a challenge for short peptides with less than 5 amino acids. We demonstrated in this study that enzyme-instructed self-assembly (EISA) provides a unique pathway to assist the self-ass...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2017-09, Vol.9 (33), p.11987-11993 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The α-helix is the most prevalent conformation in proteins. However, formation of the α-helical conformation remains a challenge for short peptides with less than 5 amino acids. We demonstrated in this study that enzyme-instructed self-assembly (EISA) provides a unique pathway to assist the self-assembly of peptides into the α-helical conformation, while a heating-cooling process leads to a conformation more similar to a β-sheet. The same peptide with different conformations self-assembled into different nanostructures. The peptide with α-helical conformation self-assembled into stable nanofibers and hydrogels, while the other one assembled into an unstable nanoparticle suspension. The nanofiber solution exhibited better stability against proteinase K digestion and an enhanced cellular uptake compared to the nanoparticle solution. Therefore, the nanomedicine formed by the α-helical peptide showed a better inhibition capacity against cancer cells in vitro and significantly inhibited tumor growth in vivo compared to the one formed by the β-sheet peptide. Our study demonstrates the unique advantages of EISA to assist peptide folding and self-assembly into biofunctional nanomaterials. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c7nr04370h |