Polyglycolide-montmorillonite as a novel nanocomposite platform for biosensing applications
In catalytic biosensors, the immobilization of biomolecules in a suitable matrix is one of the vital parameters for obtaining improved systems. Clays, which are intercalated with various organic compounds, have a great tendency to develop biosensors with high stability, sensitivity and reproducibili...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2017, Vol.41 (17), p.9371-9379 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In catalytic biosensors, the immobilization of biomolecules in a suitable matrix is one of the vital parameters for obtaining improved systems. Clays, which are intercalated with various organic compounds, have a great tendency to develop biosensors with high stability, sensitivity and reproducibility. Herein, a polymer/clay nanocomposite based on natural silicate montmorilonite (Mt) and a biodegradable polymer polyglycolide (PGA) was prepared and characterized by FT-IR, thermogravimetric analysis, differential thermogravimetric analysis and X-ray diffraction. Then, the resulting matrix was used as a fixation matrix for pyranose oxidase (POx), which was selected as a model enzyme. The bioactive layer was fabricated by immobilization of POx on glassy carbon electrodes by means of PGA-Mt and bovine serum albumin. The POx biosensor revealed a good linear range from 0.01 to 0.5 mM glucose with a LOD of 1.2 μM. After the optimization of the working and preparation conditions, characterization studies were performed for glucose detection. Finally, the PGA-Mt/POx biosensor was confirmed to have detected glucose in beverages without needing any sample pre-treatment.
In catalytic biosensors, the immobilization of biomolecules in a suitable matrix is one of the vital parameters for obtaining improved systems. |
---|---|
ISSN: | 1144-0546 1369-9261 |
DOI: | 10.1039/c7nj01751k |