Interface design for high-efficiency non-fullerene polymer solar cells
Non-fullerene polymer solar cells have attracted extensive attention due to their potential for overcoming the performance bottleneck currently encountered in fullerene-based photovoltaics. Herein, we report non-fullerene polymer solar cells with a maximal power conversion efficiency of over 11% by...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2017-08, Vol.10 (8), p.1784-1791 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-fullerene polymer solar cells have attracted extensive attention due to their potential for overcoming the performance bottleneck currently encountered in fullerene-based photovoltaics. Herein, we report non-fullerene polymer solar cells with a maximal power conversion efficiency of over 11% by introducing an n-type water/alcohol soluble conjugated polymer as a cathode interlayer. We found that the contact between the n-type interlayer and the donor provides an extra interface for charge dissociation and the matching of energy levels between the n-type interlayer and the acceptor allows efficient electron extraction from the bulk heterojunction, which eventually leads to much improved performance. This study proposes a significant design rule for designing new interfaces for high performance non-fullerene photovoltaics. |
---|---|
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/C7EE00601B |