Triethanolamine doped multilayer MoS 2 field effect transistors

Chemical doping has been investigated as an alternative method of conventional ion implantation for two-dimensional materials. We herein report chemically doped multilayer molybdenum disulfide (MoS ) field effect transistors (FETs) through n-type channel doping, wherein triethanolamine (TEOA) is use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2017-05, Vol.19 (20), p.13133-13139
Hauptverfasser: Ryu, Min-Yeul, Jang, Ho-Kyun, Lee, Kook Jin, Piao, Mingxing, Ko, Seung-Pil, Shin, Minju, Huh, Junghwan, Kim, Gyu-Tae
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical doping has been investigated as an alternative method of conventional ion implantation for two-dimensional materials. We herein report chemically doped multilayer molybdenum disulfide (MoS ) field effect transistors (FETs) through n-type channel doping, wherein triethanolamine (TEOA) is used as an n-type dopant. As a result of the TEOA doping process, the electrical performances of multilayer MoS FETs were enhanced at room temperature. Extracted field effect mobility was estimated to be ∼30 cm V s after the surface doping process, which is 10 times higher than that of the pristine device. Subthreshold swing and contact resistance were also improved after the TEOA doping process. The enhancement of the subthreshold swing was demonstrated by using an independent FET model. Furthermore, we found that the doping level can be effectively controlled by the heat treatment method. These results demonstrate a promising material system that is easily controlled with high performance, while elucidating the underlying mechanism of improved electrical properties by the doping effect in a multilayered scheme.
ISSN:1463-9076
1463-9084
DOI:10.1039/c7cp00589j