Unidirectional growth of single crystalline β-Na 0.33 V 2 O 5 and α-V 2 O 5 nanowires driven by controlling the pH of aqueous solution and their electrochemical performances for Na-ion batteries
We describe a novel synthetic route of highly single crystalline sodium vanadate (β-Na 0.33 V 2 O 5 ) and vanadium pentoxide (α-V 2 O 5 ) nanowires via a simple thermal annealing process followed by the formation of amorphous nanoparticles of V(OH) 3 and Na-containing V(OH) 3 precursors prepared by...
Gespeichert in:
Veröffentlicht in: | CrystEngComm 2017, Vol.19 (34), p.5028-5037 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a novel synthetic route of highly single crystalline sodium vanadate (β-Na
0.33
V
2
O
5
) and vanadium pentoxide (α-V
2
O
5
) nanowires
via
a simple thermal annealing process followed by the formation of amorphous nanoparticles of V(OH)
3
and Na-containing V(OH)
3
precursors prepared by controlling the pH of precursor solutions. The distinct crystal growth process suggests that the intercalation of Na ions is governed by the pH of the aqueous solution. In addition, the binding nature to the amorphous V(OH)
3
nanoparticle precursors could be a key factor in determining the unidirectional growth of highly single crystalline β-Na
0.33
V
2
O
5
and α-V
2
O
5
nanowires. The obtained single crystalline β-Na
0.33
V
2
O
5
nanowire shows promising electrode performance for sodium-ion batteries (SIB) with greater discharge capacity and better rate characteristics compared with those of the α-V
2
O
5
nanowire. The superior electrode functionality of β-Na
0.33
V
2
O
5
over α-V
2
O
5
is attributable to its better charge transfer kinetics and its higher structural and morphological stability. |
---|---|
ISSN: | 1466-8033 1466-8033 |
DOI: | 10.1039/C7CE00781G |