Conductive polymer nanocomposites: a critical review of modern advanced devices

As a unique group of advanced polymer-based materials, conductive polymer nanocomposites combining the flexibility and/or conductivity of the polymer with the distinct properties of nanofillers have found many intriguing applications in various modern devices. This review provides a concise yet incl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2017, Vol.5 (7), p.1569-1585
Hauptverfasser: Zhan, Chuanxing, Yu, Guoqiang, Lu, Yang, Wang, Luyan, Wujcik, Evan, Wei, Suying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a unique group of advanced polymer-based materials, conductive polymer nanocomposites combining the flexibility and/or conductivity of the polymer with the distinct properties of nanofillers have found many intriguing applications in various modern devices. This review provides a concise yet inclusive introduction to the concept of conductive polymer nanocomposites backed by some modern technologically advanced devices resulting from the advances made in this area. The most commonly adopted preparation strategies are first summarized, which mainly include direct mixing/blending ( ex situ ) and in situ methods ( in situ polymerization or nanostructure synthesis). Selective examples of device applications are then detailed including organic light emission diodes (OLEDs), photovoltaics (PV), electrochromic devices (ECDs) and others. Lastly, concluding remarks and future perspectives are given for conductive polymer nanocomposites as viable electronic integration tools. Conductive polymer nanocomposites have found applications in advanced devices: organic light emission diodes, organic photovoltaics, electrochromic devices, and others.
ISSN:2050-7526
2050-7534
DOI:10.1039/c6tc04269d