Combining galvanic displacement and in situ polymerization in a new synthesis: micro-composite materials for Li-based batteries

Composite electrode materials offer some of the best electrochemical performances available for Li-based batteries. However, the development of economical and scalable synthetic methods for their production remains a significant challenge, especially for submicron and nano-sized composites. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2016-01, Vol.4 (48), p.18868-18877
Hauptverfasser: Sánchez-Fontecoba, P, López del Amo, J. M, Fernández, N, Pérez-Villar, S, Rojo, T, López, C. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Composite electrode materials offer some of the best electrochemical performances available for Li-based batteries. However, the development of economical and scalable synthetic methods for their production remains a significant challenge, especially for submicron and nano-sized composites. In this work, we demonstrate a novel synthetic method which combines galvanic displacement and cationic polymerization in a one-pot synthesis. The materials obtained are Sn-based organic-inorganic micro-composites whose morphology and chemical composition can be altered by changing a few key synthetic parameters. Extensive characterization of the materials by micro-analytical and bulk methods (SEM-SE, SEM-BSE, SEM-EDS, XRD, ATR-FTIR, TGA-DSC, ICP, and SSNMR), revealed the presence of crystalline phases of Sn, of Li-containing Sn-alloys, other crystalline inorganic phases, and carbonate-based polymer. Preliminary electrochemical evaluation revealed that the Sn-containing micro-composite shows better stability than commercial micro-crystalline Sn when cycled in a lithium half-cell. A novel one-pot synthesis combines galvanic displacement reactions with in situ polymerization to obtain organic-inorganic micro-composite materials.
ISSN:2050-7488
2050-7496
DOI:10.1039/c6ta07273a