High density 3D printed microfluidic valves, pumps, and multiplexers
In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins ( RS...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2016-01, Vol.16 (13), p.245-2458 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins (
RSC Adv.
, 2015,
5
, 106621), we demonstrate valves with only 10% of the volume of our original 3D printed valves (
Biomicrofluidics
, 2015,
9
, 016501), which were already the smallest that have been reported. Moreover, we show that incorporation of a thermal initiator in the resin formulation along with a post-print bake can dramatically improve the durability of 3D printed valves up to 1 million actuations. Using two valves and a valve-like displacement chamber (DC), we also create compact 3D printed pumps. With 5-phase actuation and a 15 ms phase interval, we obtain pump flow rates as high as 40 μL min
−1
. We also characterize maximum pump back pressure (
i.e.
, maximum pressure the pump can work against), maximum flow rate (flow rate when there is zero back pressure), and flow rate as a function of the height of the pump outlet. We further demonstrate combining 5 valves and one DC to create a 3-to-2 multiplexer with integrated pump. In addition to serial multiplexing, we also show that the device can operate as a mixer. Importantly, we illustrate the rapid fabrication and test cycles that 3D printing makes possible by implementing a new multiplexer design to improve mixing, and fabricate and test it within one day.
We demonstrate that a custom resin with the right optical properties enables a digital light processor stereolithographic (DLP-SLA) 3D printer to fabricate microfluidic devices with densely integrated active elements in a 3D layout. |
---|---|
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/c6lc00565a |