Molecular design of host materials for high power efficiency in blue phosphorescent organic light-emitting diodes doped with an imidazole ligand based triplet emitter

A molecular design strategy to facilitate electron injection and to reduce driving voltage was proposed to reach high power efficiency in blue phosphorescent organic light-emitting diodes (PHOLEDs) doped with a phenylimidazole ligand based triplet emitter. The host materials were designed to keep th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2016-01, Vol.4 (17), p.3792-3797
Hauptverfasser: Oh, Chan Seok, Lee, Jun Yeob, Noh, Chang Ho, Kim, Sung Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A molecular design strategy to facilitate electron injection and to reduce driving voltage was proposed to reach high power efficiency in blue phosphorescent organic light-emitting diodes (PHOLEDs) doped with a phenylimidazole ligand based triplet emitter. The host materials were designed to keep the hole transport properties and triplet energy of a parent molecule. One or two CN units were attached to 3- or 3,6-positions of carbazole of 3,3-di(9 H -carbazol-9-yl)biphenyl (mCBP) to manage electron transport properties of the parent mCBP host. The CN unit donated electron accepting character to the mCBP host and increased electron current density in the device, which improved power efficiency of the blue PHOLEDs from 41.8 lm W −1 to 57.1 lm W −1 . Molecular design strategy to improve the power efficiency of blue phosphorescent organic light-emitting diodes was proposed by introducing a CN modified carbazole moiety.
ISSN:2050-7526
2050-7534
DOI:10.1039/c5tc02595h