Al-coordination polymer-derived nanoporous nitrogen-doped carbon microfibers as metal-free catalysts for oxygen electroreduction and acetalization reactions

Nanoporous nitrogen-doped carbon microfibers were facilely synthesized by the pyrolysis of coordination polymer microfibers of aluminium-diethylenetriamine pentaacetic acid (Al-DTPA). Al-DTPA microfibers could be easily produced at a scale of over 0.25 kilograms by a homogeneous precipitation reacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015, Vol.3 (47), p.23716-23724
Hauptverfasser: Han, Zhen, Yu, Youyi, Zhang, Yongbo, Dong, Bing, Kong, Aiguo, Shan, Yongkui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoporous nitrogen-doped carbon microfibers were facilely synthesized by the pyrolysis of coordination polymer microfibers of aluminium-diethylenetriamine pentaacetic acid (Al-DTPA). Al-DTPA microfibers could be easily produced at a scale of over 0.25 kilograms by a homogeneous precipitation reaction of DTPA and aluminium nitrate in aqueous solution. After undergoing thermal conversion of Al-DTPA at the optimized temperatures and acid-leaching, the well-defined nitrogen-doped carbon microfibers were obtained at a scale of over 10 g in the laboratory. The interconnected nanoporous textures and plentiful nitrogen-doped functional sites endow such microfibers with not only efficient catalytic activity for the oxygen reduction reaction (ORR) in 0.1 M KOH electrolyte, but also superior durability and methanol-tolerance during ORR. Moreover, Al-DTPA microfibers could be also transferred into carbon-based nanoporous solid acids by the sulfuric acid-solvothermal treatment. Plentiful –SO 3 H functional groups were grafted on the surfaces of nanoporous nitrogen-dopped carbon microfibers (protonic acid amount, 1.8 mmol g −1 ). They served as a highly efficient and recyclable solid acid catalyst for the acetalization of benzaldehyde and ethylene glycol in a yield of about 99.0 at%. The thermal conversion of Al-coordination polymers might be a new practically feasible technique for the preparation of functional nanoporous nitrogen-doped carbon microfibers.
ISSN:2050-7488
2050-7496
DOI:10.1039/C5TA05605E