Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications

The over-exploitation of fossil fuels means that research into alternative sustainable energy sources is crucial for the scientific community. The harvesting of solar energy via photocatalysis is a key approach to developing these alternatives. Furthermore, photocatalytic materials show great promis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015-01, Vol.3 (36), p.18345-18359
Hauptverfasser: Nguyen, Chinh Chien, Vu, Nhu Nang, Do, Trong-On
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The over-exploitation of fossil fuels means that research into alternative sustainable energy sources is crucial for the scientific community. The harvesting of solar energy via photocatalysis is a key approach to developing these alternatives. Furthermore, photocatalytic materials show great promise for degradation of pollutants. However, limitations in incident light utilization and charge separation are major drawbacks that restrict the activity of current artificial photosystems. Construction of hollow nano-sized photocatalysts is emerging as a promising approach to fabricating novel and effective materials, as hollow photocatalysts possess unique properties that may be exploited to overcome these challenges. This review gives a concise overview of the advantages of hollow structures for this purpose, the methodology used to prepare hollow photocatalysts, and the current state-of-the-art in the development of hollow structure photocatalysts for energy production and environmental applications. This review highlights the recent development of sunlight-driven hollow-structure photocatalysts for solar fuel production and environmental remediation.
ISSN:2050-7488
2050-7496
DOI:10.1039/c5ta04326c