Electrochemical sensing using boronic acids
Boronic acids can bind with 1,2- or 1,3-diols to form five or six-membered cyclic complexes and also can interact with Lewis bases to generate boronate anions. Therefore, boronic acid functionalised compounds and materials are highly topical and now employed in (i) functional materials, (ii) for att...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2015-01, Vol.51 (78), p.14562-14573 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Boronic acids can bind with 1,2- or 1,3-diols to form five or six-membered cyclic complexes and also can interact with Lewis bases to generate boronate anions. Therefore, boronic acid functionalised compounds and materials are highly topical and now employed in (i) functional materials, (ii) for attaching/sensing bio-molecules and proteins, and (iii) for microbial electrochemistry as well as being widely developed as chemical sensors and tools in health diagnostics. In this review, we address the recent progress of boronic acid-based electrochemical sensors both in solution processes and surface processes for the detection of biological analytes. This feature article will be of interest to chemists, chemical engineers, biochemists, the sensor community, but also researchers working with protein and microbial systems.
Boronic acids can bind with 1,2- or 1,3-diols to form five or six-membered cyclic complexes and also can interact with Lewis bases to generate boronate anions, making them suitable for the electrochemical sensing of these species |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/c5cc04976h |