Self-assemblies of amphiphilic homopolymers: synthesis, morphology studies and biomedical applications
The need for a simplified access to supramolecular assemblies with enhanced tenability has led to the development of amphiphilic homopolymers (APHPs). This feature article highlights recent advances and future trends in APHP design, self-assembly, and biomedical applications. APHP self-assemblies ar...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2015-07, Vol.51 (58), p.11541-11555 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The need for a simplified access to supramolecular assemblies with enhanced tenability has led to the development of amphiphilic homopolymers (APHPs). This feature article highlights recent advances and future trends in APHP design, self-assembly, and biomedical applications. APHP self-assemblies are prepared by two different routes: the "monomer-induced" method, which polymerizes functional amphiphilic monomers into micelles and inverse micelles, and the "hydrophobic-group-induced" method, which uses the non-covalent interaction provided by large hydrophobic endgroups. Special emphasis is paid to unimolecular polymeric micelles (UPMs) which are formed from core-shell APHPs and which consist of a hydrophobic/hydrophilic core coated with a polymer shell. The self-assembled supramolecular structures hold promise for various biomedical fields, including living cell transport, fluorescence labelling, protein sensing and extraction, DNA detection, and drug loading and release.
The need for a simplified access to supramolecular assemblies with enhanced tenability has led to the development of amphiphilic homopolymers (APHPs). This review highlights recent advances and future trends in APHP design, self-assembly, and biomedical applications. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/c5cc03016a |