Nanophase CuInS 2 nanosheets/CuS composite grown by the SILAR method leads to high performance as a counter electrode in dye sensitized solar cells
Single phase CuInS 2 (CIS) nanosheets are synthesized on TiO 2 coated FTO by the simple technique of Successive Ionic Layer Adsorption Reaction (SILAR) followed by annealing at 500 °C. Annealing at a lower temperature of 250 °C is found to yield CuS nanoparticles in addition to the CIS phase. Both s...
Gespeichert in:
Veröffentlicht in: | RSC advances 2014, Vol.4 (42), p.21989-21996 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single phase CuInS
2
(CIS) nanosheets are synthesized on TiO
2
coated FTO by the simple technique of Successive Ionic Layer Adsorption Reaction (SILAR) followed by annealing at 500 °C. Annealing at a lower temperature of 250 °C is found to yield CuS nanoparticles in addition to the CIS phase. Both single phase CIS and the CuS/CIS nanocomposite were examined as counter electrodes for a dye-sensitized solar cell (DSSC). The CIS–CuS composite is found to have a synergistic effect on the catalytic performance toward the reduction of tri-iodide, yielding a power conversion efficiency of 6.3% as compared to pristine CIS (5%) or CuS (3.5%). The possible reasons behind the high performance of the composite are elucidated using cyclic voltammetry (CV) measurements and electrochemical impedance spectroscopy (EIS). |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/C4RA01740D |