Improved electronic coupling in hybrid organic-inorganic nanocomposites employing thiol-functionalized P3HT and bismuth sulfide nanocrystals

In this study, we employ a thiol-functionalized polymer (P3HT-SH) as a leverage to tailor the nanomorphology and electronic coupling in polymer-nanocrystal composites for hybrid solar cells. The presence of the thiol functional group allows for a highly crystalline semiconducting polymer film at low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2014-09, Vol.6 (17), p.118-126
Hauptverfasser: Martinez, L, Higuchi, S, MacLachlan, A. J, Stavrinadis, A, Cates, N, Diedenhofen, S. L, Bernechea, M, Sweetnam, S, Nelson, J, Haque, S. A, Tajima, K, Konstantatos, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we employ a thiol-functionalized polymer (P3HT-SH) as a leverage to tailor the nanomorphology and electronic coupling in polymer-nanocrystal composites for hybrid solar cells. The presence of the thiol functional group allows for a highly crystalline semiconducting polymer film at low thiol content and allows for improved nanomorphologies in hybrid organic-inorganic systems when employing non-toxic bismuth sulfide nanocrystals. The exciton dissociation efficiency and carrier dynamics at this hybrid heterojunction are investigated through photoluminescence quenching and transient absorption spectroscopy measurements, revealing a larger degree of polaron formation when P3HT-SH is employed, suggesting an increased electronic interaction between the metal chalcogenide nanocrystals and the thiol-functionalized P3HT. The fabricated photovoltaic devices show 15% higher power conversion efficiencies as a result of the improved nanomorphology and better charge transfer mechanism together with the higher open circuit voltages arising from the deeper energy levels of P3HT-SH. We show that thiol-functionalized block copolymers allow finer nanomorphologies, increased charge transfer rates and improved photovoltaic performance in nanocomposites
ISSN:2040-3364
2040-3372
DOI:10.1039/c4nr01679c