Enzymatic activation of pyruvate kinase increases cytosolic oxaloacetate to inhibit the Warburg effect

Pharmacological activation of the glycolytic enzyme PKM2 or expression of the constitutively active PKM1 isoform in cancer cells results in decreased lactate production, a phenomenon known as the PKM2 paradox in the Warburg effect. Here we show that oxaloacetate (OAA) is a competitive inhibitor of h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature metabolism 2021-07, Vol.3 (7), p.954-968
Hauptverfasser: Wiese, Elizabeth K., Hitosugi, Sadae, Loa, Sharon T., Sreedhar, Annapoorna, Andres-Beck, Lindsey G., Kurmi, Kiran, Pang, Yuan-Ping, Karnitz, Larry M., Gonsalves, Wilson I., Hitosugi, Taro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pharmacological activation of the glycolytic enzyme PKM2 or expression of the constitutively active PKM1 isoform in cancer cells results in decreased lactate production, a phenomenon known as the PKM2 paradox in the Warburg effect. Here we show that oxaloacetate (OAA) is a competitive inhibitor of human lactate dehydrogenase A (LDHA) and that elevated PKM2 activity increases de novo synthesis of OAA through glutaminolysis, thereby inhibiting LDHA in cancer cells. We also show that replacement of human LDHA with rabbit LDHA, which is relatively resistant to OAA inhibition, eliminated the paradoxical correlation between the elevated PKM2 activity and the decreased lactate concentration in cancer cells treated with a PKM2 activator. Furthermore, rabbit LDHA-expressing tumours, compared to human LDHA-expressing tumours in mice, displayed resistance to the PKM2 activator. These findings describe a mechanistic explanation for the PKM2 paradox by showing that OAA accumulates and inhibits LDHA following PKM2 activation. Wiese et al. find that oxaloacetate generated through increased activation of PKM2 can inhibit lactate dehydrogenase A, shedding light on the long observed PKM2 paradox during Warburg metabolism in cancer cells.
ISSN:2522-5812
2522-5812
DOI:10.1038/s42255-021-00424-5