Enantioselective decarboxylative alkylation using synergistic photoenzymatic catalysis

Photoenzymatic catalysts are attractive for stereoselective radical reactions because the transformation occurs within tunable enzyme active sites. When using flavoproteins for non-natural photoenzymatic reactions, reductive mechanisms are often used for radical initiation. Oxidative mechanisms for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature catalysis 2024-01, Vol.7 (1), p.35-42
Hauptverfasser: Sun, Shang-Zheng, Nicholls, Bryce T., Bain, David, Qiao, Tianzhang, Page, Claire G., Musser, Andrew J., Hyster, Todd K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoenzymatic catalysts are attractive for stereoselective radical reactions because the transformation occurs within tunable enzyme active sites. When using flavoproteins for non-natural photoenzymatic reactions, reductive mechanisms are often used for radical initiation. Oxidative mechanisms for radical formation would enable abundant functional groups, such as amines and carboxylic acids, to serve as radical precursors. However, excited state flavin is short-lived in many proteins because of rapid quenching by the protein scaffold. Here we report that adding an exogenous Ru(bpy) 3 2+ cofactor to flavin-dependent ‘ene’-reductases enables the redox-neutral decarboxylative coupling of amino acids with vinylpyridines with high yield and enantioselectivity. Additionally, stereo-complementary enzymes are found to provide access to both enantiomers of the product. Mechanistic studies indicate that Ru(bpy) 3 2+ binds to the protein, helping to localize radical formation to the enzyme’s active site. This work expands the types of transformation that can be rendered asymmetric using photoenzymatic catalysis and provides an intriguing mechanism of radical initiation. Merging photoredox and biocatalysis provides opportunities to address challenges in synthetic chemistry. Now the combination of a ruthenium photocatalyst for oxidative radical formation and ‘ene’-reductases for radical interception enables an enantiodivergent decarboxylative alkylation reaction.
ISSN:2520-1158
2520-1158
DOI:10.1038/s41929-023-01065-5