Carboxyl intermediate formation via an in situ-generated metastable active site during water-gas shift catalysis
Definitive experimental proof for catalytic pathways and active sites during the low-temperature water-gas shift reaction remains elusive. Herein, we combine spectroscopic, kinetic and computational analyses to address the decades-long mechanistic controversy by studying the reverse water-gas shift...
Gespeichert in:
Veröffentlicht in: | Nature catalysis 2019-10, Vol.2 (10), p.916-924 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Definitive experimental proof for catalytic pathways and active sites during the low-temperature water-gas shift reaction remains elusive. Herein, we combine spectroscopic, kinetic and computational analyses to address the decades-long mechanistic controversy by studying the reverse water-gas shift over Pd/Al
2
O
3
. Isotopic transient kinetic analysis established the minor role of the formate intermediate, whereas hydrogen titration experiments confirmed the intermediacy of carboxyl. The ability to decouple the parallel formate and carboxyl pathways led to the identification of a distinct active site that exhibits regio- and chemoselective hydrogen addition to CO
2
to yield the carboxyl intermediate. The metastable active site is formed in situ, resulting in hydroxylation of the metal–support interface and electronic restructuring. Atomistic simulations of the active site electronic structure and mechanistic landscape provided a framework that is consistent with experimental observations. Our study highlights the dynamic creation of a coordinatively unsaturated metal site caused by substrate adsorption on an adjacent support site.
Due to its importance, the water-gas shift reaction has been the subject of numerous studies; however, a unifying mechanistic picture has not yet emerged. Now, a combination of spectroscopic, kinetic and computational methods reveal the crucial role of carboxyl intermediate for this centuries-old process. |
---|---|
ISSN: | 2520-1158 2520-1158 |
DOI: | 10.1038/s41929-019-0343-2 |