Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy

NiFeO x H y are the most active catalysts for oxygen evolution in a base. For this reason, they are used widely in alkaline electrolysers. Several open questions remain as to the reason for their exceptionally high catalytic activity. Here we use a model system of mass-selected NiFe nanoparticles an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature catalysis 2018-11, Vol.1 (11), p.820-829
Hauptverfasser: Roy, C., Sebok, B., Scott, S. B., Fiordaliso, E. M., Sørensen, J. E., Bodin, A., Trimarco, D. B., Damsgaard, C. D., Vesborg, P. C. K., Hansen, O., Stephens, I. E. L., Kibsgaard, J., Chorkendorff, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:NiFeO x H y are the most active catalysts for oxygen evolution in a base. For this reason, they are used widely in alkaline electrolysers. Several open questions remain as to the reason for their exceptionally high catalytic activity. Here we use a model system of mass-selected NiFe nanoparticles and isotope labelling experiments to show that oxygen evolution in 1 M KOH does not proceed via lattice exchange. We complement our activity measurements with electrochemistry–mass spectrometry, taken under operando conditions, and transmission electron microscopy and low-energy ion-scattering spectroscopy, taken ex situ. Together with the trends in particle size, the isotope results indicate that oxygen evolution is limited to the near-surface region. Using the surface area of the particles, we determined that the turnover frequency was 6.2 ± 1.6 s −1 at an overpotential of 0.3 V, which is, to the best of our knowledge, the highest reported for oxygen evolution in alkaline solution. The reason for the high water-oxidation activity of Ni(Fe)O x H y catalysts in alkaline electrolyte is not yet well understood. Now, Chorkendorff and co-workers report that oxygen evolution is limited to the near-surface region by measuring the activity trends of mass-selected NiFe nanoparticles.
ISSN:2520-1158
2520-1158
DOI:10.1038/s41929-018-0162-x